
Priority-Based Human Resource Allocation
in Business Processes?

Cristina Cabanillas1, José Maŕıa Garćıa2, Manuel Resinas3,
David Ruiz3, Jan Mendling1, and Antonio Ruiz-Cortés3

1Vienna University of Economics and Business, Austria
{cristina.cabanillas,jan.mendling}@wu.ac.at

2 STI Innsbruck, University of Innsbruck, Austria jose.garcia@sti2.at
3University of Seville, Spain {resinas,druiz,aruiz}@us.es

Abstract. In Business Process Management Systems, human resource
management typically covers two steps: resource assignment at design
time and resource allocation at run time. Although concepts like role-
based assignment often yield several potential performers for an activity,
there is a lack of mechanisms for prioritizing them, e.g., according to
their skills or current workload. In this paper, we address this research
gap. More specifically, we introduce an approach to define resource pref-
erences grounded on a validated, generic user preference model initially
developed for semantic web services. Furthermore, we show an imple-
mentation of the approach demonstrating its feasibility.
Keywords: preference modeling, preference resolution, priority-based
allocation, priority ranking, RAL, resource allocation, SOUP

1 Introduction

Business Process Management System (BPMS) are increasingly used for sup-
porting service composition. Typically, they work with executable process mod-
els that define the control flow, data processing, and resource involvement of a
specific process. Resources in this context include both automatic services and
services provided by human resources. In particular, the appropriate selection
of human resources is critical as various factors such as workload or skills have
an impact on work performance. While priorities for automatic services are in-
tensively researched, it is surprising that prioritizing human resources has been
hardly discussed. In classical workflow management, only two steps of resource
management are considered: resource assignment at the level of process speci-
fication and resource allocation at run time [1]. Resource assignment builds on
defining for each activity the human resources that are candidates to work on
the activity. These are called potential performers. At run time, the resource

? This work was partially supported by the European Union’s Seventh Framework
Programme (FP7/2007-2013), the European Commission (FEDER), the Spanish
and the Andalusian R&D&I programmes (grants 318275 (GET Service), 284860
(MSEE), TIN2009-07366 (SETI), TIN2012-32273 (TAPAS), TIC-5906 (THEOS)).

allocation step considers these potential performers to select actual performers
(often a single person) who find the activity in their worklist. For instance, the
Yet Another Workflow Language (YAWL) system [2] uses this concept to sup-
port various Workflow Resource Patterns (WRPs) [3]. Even though these WRPs
identify strategies to balance workload, there is no explicit consideration of pri-
oritizing potential performers to facilitate the selection of the actual performer.
This is remarkable, as deriving a set of performers immediately poses the ques-
tion of who would be the best candidate to pick up the work. Also professional
solutions such as Activiti1, WebSphere MQ2 or BPEL4People, do not provide
means to prioritize performers, but assign priority indicators to activities only.

In this paper, we address this research gap of how prioritization of resources
can be integrated in BPMS. More specifically, we provide two contributions:
(i) we conceptually define prioritized allocation based on preferences; and (ii)
we propose a concrete way in which preferences over resources can be defined
such that a resource priority ranking can be automatically generated. Our solu-
tion builds on the adaptation of a user preference model that was developed for
the discovery and ranking of semantic web services [4] to the domain at hand.
As a proof of concept, we have extended the resource management tool Collec-
tion of Resource-centrIc Supporting Tools And Languages (CRISTAL)3 [5] with
the Semantic Ontology of User Preferences (SOUP) component [6] to support
priority-based allocation. In this system, Resource Assignment Language (RAL)
[7] is used for resource selection.

The rest of the paper is structured as follows. In Section 2, we conceptually
define priority-based allocation based on preferences and describe the require-
ments to address it based on a motivating scenario. In Section 3, we explain the
adaptation of the preference metamodel and its formalization for automated pri-
oritization. In Section 4, we evaluate the approach regarding preference modeling
and resolution. Work related to preference modeling and resource prioritization
in Business Processes (BPs) is detailed in Section 5, before closing the paper by
drawing some conclusions and deriving potential future work in Section 6.

2 Priority-Based Resource Allocation

We define priority-based resource allocation as the ability to rank a set of re-
sources according to one or more preferences. The result is thus a prioritized
list of resources that can be allocated to a process activity. In the following, we
present a real scenario that motivates the problem, and a set of requirements
that must be considered in order to deal with it.

2.1 Motivating Scenario

The need for resource prioritization is motivated by a real scenario located in
the Andalusian Institute of Public Administration (in Spanish IAAP), which

1 http://www.activiti.org/
2 http://www-01.ibm.com/software/integration/wmq/
3 http://www.isa.us.es/cristal

Hacienda Process

IA
AP

IAAP

Create
Resolut ion
Proposal

Update
Resolut ion
Proposal

Analyze
Reports

Internal
Resolut ion

Request
Report to

Consultat ive
Board

Request
Report to

Legal
Department

External
resolut ion required?

Receive
External

Resolut ion

External
Resolut ion

Resolut ion
Proposal

Resolut ion
Proposal Resolut ion

Proposal

Request
External

Resolut ion

Report CB

Report LD

Sign, Store
and Notify
Resolut ion

Data warehouse

CONSULTATIVE BOARD

LEGAL DEPARTMENT

EXTERNAL COMMITTEE

N
o

Ye
s

Dr. CRISTINA CABANILLAS 1 of 1 14.06.2013

Fig. 1: BP to create and process a resolution proposal for hiring people

serves more than eight million end users. The Business Process (BP) in question
represents the procedure to create and process a resolution proposal for hiring
people and has a high use frequency in the IAAP. Fig. 1 shows the process in
Business Process Model and Notation (BPMN). Once a draft of a resolution
proposal is created, it is concurrently sent to the Consultative Board and to
the Legal Department for evaluation. The IAAP then analyzes the reports and
decides whether an external resolution is required. In that case, a request is sent
to an external committee, which must create and send a new resolution. Other-
wise, the resolution proposal is reviewed, and changes are applied to the initial
one according to the reports received. In any case, the documents generated are
signed and archived, and the resolution result is appropriately notified.

The part of the organizational structure of the IAAP related to Adminis-
trative Resource Management involved in this BP is hierarchically structured
in eight positions: Business Manager (BM), Technician of the IAAP (T-IAAP),
Assistant of the IAAP (A-IAAP), Secretary (SE), Assistant of the Legal De-
partment (A-LD), Technician of the Legal Department (T-LD), Assistant of
the Consultative Board (A-CB) and Technician of the Consultative Board (T-
CB). They are occupied by a total of eleven people. Table 1 shows the selection
conditions for each activity (positions are acronymized) and the preferences to
prioritize the resulting set of potential performers for allocation.

2.2 Requirements for Resource Prioritization

The preferences for priority-based allocation as defined in the example have to
yield a partial order relation over the set of potential performers of an activity.
More specifically, we identify a set of requirements that must hold in order to
deal with such automated resource prioritization as follows:

– Resource assignment. Some mechanism for resource assignment must be put
into place to calculate the potential performers before resource prioritization.
There are many different approaches for that purpose, e.g., [8–10].

Activity Potential
Performers

Preferences

Create Resolu-
tion Proposal

T-IAAP The greatest number of past executions of the ac-
tivity (history)

Request Report
to CB/LD

T-IAAP The best balance between low cost (price) and short
worklist (availability), i.e., a person is preferred over
another person if his/her cost is lower and his/her
worklist is not longer, or vice versa

Analyze Reports T-IAAP The least average execution time for the activity
(speed)

Request External
Resolution

SE The best skills on using a specific software applica-
tion (expertise)

Update Resolu-
tion Proposal

T-IAAP, T-
CB or T-LD

The same person who created the resolution draft
(Binding of Duties (BoD) [8])

Sign, Store and
Notify Resolu-
tion

SE A person that has been working for the company for
at least one year (experience). In case of no distinc-
tion, the person with shortest worklist (availability)

Table 1: Resource selection conditions and resource preferences

– Expressive preference modeling. In this context, there is a need for expressive
preferences that range from single-value criteria (e.g., age), to composite
preferences where the preferences themselves can be ranked (cf. preference
for Sign, Store and Notify Resolution in Table 1).

– Preference resolution. Some mechanism must enable the automated resolu-
tion of preferences at run time based on actual values.

– Information availability. In addition, similarly as for resource assignment,
specific information (also called properties) about the resources needs to be
stored, updated, and retrieved, to define and resolve resource preferences.
For instance, the following types of properties can be distinguished for our
motivating scenario:

• Personal and Organizational Data. From personal data such as the ID
number, name or age, to properties related to positions occupied in the
company or functional roles being held. This data partially depends on
the type of organizational model used in the company.

• Skills. As shown for activity Request External Resolution in Table 1,
knowledge on specific software applications, technologies, methodologies,
etcetera may be of interest for resource prioritization.

• Professional Information. Information on the salary of the resource (e.g.
in terms of cost/hour) or the years of experience, can be necessary to
determine the resource that best meets the needs of the company.

• Worklist. The workload of the resources can also be critical to offer
or allocate an activity to a specific person. An organization may prefer
having balanced workloads rather than very busy people and idle people.

• History. For each person, information about the past execution of process
activities must be stored, e.g. activities performed, BPs to which they
belonged, execution time, number of times executed, etcetera.

This list cannot be exhaustive, but has to be adapted for the context of the
process at hand. For instance, in other cases it might also be necessary to
access calendar data, such as scheduled meetings or holidays, in order to
prioritize according to availability on a specific date.

3 Materializing Priority-Based Resource Allocation

As derived from the previous section, the main challenge for resource prioriti-
zation is two-fold: (i) to come up with a mechanism to express preferences over
resources, and (ii) to develop a way to rank a set of resources according to those
preferences. Furthermore, the solution should be as independent as possible from
the properties used in the preferences so that they can accommodate the different
requirements several organizations may have.

The first challenge is solved by leveraging SOUP, a highly expressive user
preference model defined by Garćıa et al. [4, 6] that we adapt to the BP domain
in this paper. To deal with the second challenge, we have developed a novel al-
gorithm to rank resources according to the preferences expressed in SOUP. Both
the preference metamodel and the algorithm are independent of the properties
used in the preferences.

3.1 SOUP: A Metamodel to Define Preferences

In SOUP, a preference can be intuitively expressed as “I prefer y rather than
x”, where x and y are instances of domain concepts that represent properties of
the resources to be allocated (e.g., size of the worklist). This relation between
concept instances can be mathematically interpreted as a strict partial order.
Therefore, in SOUP a preference can be defined as:

Definition 1 (Preference). Let C be a non-empty set of domain concepts, and
dom(C) the set of all possible instances of those concepts. We define a preference
as P = (C, <P), where <P⊆ dom(C)× dom(C) is a strict partial order (irreflex-
ive, transitive and asymmetric), and if x, y ∈ dom(C), then x <P y is interpreted
as “I prefer y rather than x”.

Consequently, each preference term instance defines its order depending on
the concrete concepts referred (C) and some operand values that determine the
evaluation of the <P relation. Furthermore, if we consider a finite set of concept
instance pairs (x, y) ∈<P , P can be represented as a directed acyclic graph,
also known as Hasse diagram [11], where each node corresponds to a concept
instance, and edges represent the preference relation <P .

Fig. 2 shows a UML representation of SOUP preference terms. Atomic pref-
erences can be expressed using different preference terms, whereas composite

preferences can be used to compose those terms, defining the relation between
previously expressed atomic preferences. Both atomic and composite preferences
are handled by ranking mechanisms that implement the ranking process accord-
ing to the corresponding term definition.

Fig. 2: UML representation of SOUP

In particular, atomic preferences are related to a domain-specific concept
that usually represents a property that should be optimized to fulfill the user
preference over it. SOUP supports both qualitative and quantitative preferences,
depending on the nature of the property referred by the concrete preference. On
the one hand, if the property is qualitative, e.g. the skills of a resource, one
can use a Favorites preference to state that certain values of that property
are favored against the rest (e.g., skills on a concrete software application).
Conversely, a Dislikes preference can be used to enumerate the values that
should not be provided for the referred property. A FavoritesAlternative

allows defining a favorite and an alternative set of property values, meaning that
values contained in the former set are the most preferred, but if there is none
then values from the latter set can also be considered. A FavoritesDislikes

preference is a combination of a Favorites and a Dislikes preference, where
preferred values are the ones in the favored set or at least not in the disfavored
set. Finally, an Explicit preference simply states the preference between two
concrete values of a property (e.g. skills on LibreOffice are more preferred than
skills on Microsoft Office).

On the other hand, quantitative preferences compare numerical values of the
related properties. Thus, a Highest (Lowest) preference means the user prefers
higher (lower) values for the referred property. Around and Between preferences

Fig. 3: Modeling priority-based resource allocation using SOUP

prefer values that are close to a specific value, or included within an interval,
respectively. Finally, a Score preference expresses that the property value will
be evaluated using a scoring function that returns a real value between 0 and 1
expressing to what extent the referred property value is preferred against others.

Concerning composite preferences, SOUP provides three facilities for defin-
ing the semantics. First, a Balanced preference P combines preference terms
P1, . . . ,Pn using the Pareto-optimality principle. Therefore, a resource rscl is
considered better than another resource rscm with respect to P if rscl is better
than rscm with respect to any Pi such that rscl is not worse than rscm with
respect to the rest of the combined preferences Pj with i 6= j.

Second, a Prioritized preference combines preferences in importance order.
If a list of terms P1,P2, . . . ,Pn is combined using this operator, resources will
be ranked first in terms of P1. Those that are equally preferred using P1 are
ranked in terms of P2, and so forth.

Finally, a Numerical preference is the combination of preferences using a
real function to obtain a numerical score value for each resource. Resources are
ranked in terms of their score values. However, this composite preference can
only combine quantitative preferences that can be evaluated to a score value.

3.2 Modeling Priority-Based Resource Allocation with SOUP

Two aspects must be modeled for resource prioritization, namely resource as-
signments for defining potential performers, and preference modeling for defining
their order of priority (cf. Fig. 3).

First, each activity of the BP has a resource assignment expression that de-
fines its set of potential performers. In our case, we use RAL [12] as a language
to select a set of potential performers. The language is grounded on a consen-
sual organizational metamodel [13] that takes into consideration not only people
and roles, but also positions, organizational units and skills. It also allows se-
lecting people based on the performers of previous activities in the process. We
have chosen RAL for its expressiveness, extensibility, and for its capabilities to
automatically resolve RAL expressions [7].

Second, preferences for resource prioritization are formulated using SOUP
Preference Terms. All such preferences in SOUP must refer to some domain
concept that represents the properties used in the preference. Therefore, model-
ing the preferences specified for each of the activities of the scenario also involves
identifying the domain concepts used to prioritize resources. For instance, our
scenario requires domain concepts like Cost and the number of times a resource
has carried out a certain activity (History Count Activities). Additionally,
a RAL expression can also be used in place of a domain concept. An example of
such a preference is I prefer the resource that is responsible for activity Create
Resolution Proposal, which can be modeled by means of a preference term of
type Favorites referred to a domain concept of type RAL Expression and an
operand that specifies the expression: IS PERSON RESPONSIBLE FOR ACTIVITY

Create Resolution Proposal.

3.3 Ranking Resources According to SOUP Preferences

The prioritization of resources according to preferences is based on ranking mech-
anisms, which can be defined as follows:

Definition 2 (Ranking mechanism). We define a ranking mechanism as an
algorithm that receives as input a preference and a set of resources to be ranked,
and returns as output a partially ordered set of the resources ranked according
to the preference.

Each Preference Term has a ranking mechanism that is used to implement
the ranking process according to the corresponding term definition. Ranking
mechanisms can be shared between different preference terms. In [6], ranking
mechanisms for composite preference terms are discussed. However, the authors
do not provide details about the ranking mechanisms for atomic preferences
because they heavily depend on the characteristics of the knowledge base that
contains the information about the domain concepts used in the preferences.

Therefore, in this section we adapt SOUP by providing a formalization of a
generic ranking mechanism for atomic preferences, which has been designed to
deal with the following characteristics of the knowledge base used for priority-
based resource allocation: (1) it is usually distributed in different heterogeneous
repositories such as a process log, an organizational model and an Enterprise
Resource Planning (ERP) system; (2) it is dynamic in the sense that some of its
repositories are continously changing (e.g., the worklist of each resource); and
(3) computing the value of a domain concept for a resource can be a complex
operation. For instance, computing the availability of a resource may involve
checking his/her agenda, a calendar of the holidays of the country in which s/he
works and the worklist of his/her pending tasks.

Reflecting these characteristics, we separate the evaluation of a domain con-
cept for a resource from the ordering of the resources according to this evaluation.
The first task is solved by defining a function evalKB

P that is specific for each
domain concept and for each knowledge base and can be defined as follows.

Definition 3 (Domain concept evaluation). Let KB be a knowledge base,
P = (C, <P) be an atomic preference, and R be the set of resources of the
organization.

– If the domain concept C represents a quantitative property, then we define the
evaluation as a function evalKB

P : R → R, such that it returns a real number
that represents the value of the domain concept for the given resource.

– If the domain concept C represents a qualitative property, then we define the
evaluation as a function evalKB

P : R → {false, true}, such that it returns a
boolean that represents whether the value of the domain concept belongs to
the set specified in the preference.

For instance, the evaluation of the quantitative concept size of the worklist
for a resource r is the size of the worklist of resource r. Similarly, the evalua-
tion of the qualitative concept resource expression with operand IS PERSON
RESPONSIBLE FOR ACTIVITY Create Resolution Proposal (which is a RAL
expression) for a resource r is true if, according to the organizational model, r
is a person responsible for that activity.

The second task that must be performed involves applying the partial order
specified by the type of a preference to the result of an evaluation. This is done
by defining for each type of preference, a function that compares these results.

Definition 4 (Greater-than comparison). Let KB be a knowledge base with
information about the domain concepts used in the preferences, P be an atomic
preference such that P = (C, <P), and D be the range of function evalKB

P for
such preference. We define a greater-than comparison for partial order <P as a
function gt<P : D ×D → {false, true} such that gt<P (di, dj) returns true if di
is greater than dj according to <P , i.e., if di is preferred over dj.

The implementation of this function can be straightforwardly derived from
the type of the preference it corresponds to. For instance, if <P corresponds to
the type Higher, then gtHigher(n, n

′) is true iff n > n′. The same procedure can
be applied to all of the other types of atomic preferences.

Using these two functions it is easy to provide an implementation of a generic
ranking mechanism of atomic preferences as depicted in Algorithm 1. The algo-
rithm simply iterates over the list of resources provided to the ranking mechanism
and adds an edge r → r′ to the graph if r′ is preferred to r according to the pref-
erence P and the information in the knowledge base KB . Note that it is possible
to provide more efficient implementations by means of domain-specific ranking
mechanisms that leverage capabilities of the repositories of the knowledge base.
However, a discussion of the different implementations of ranking mechanisms
that can be developed is out of the scope of this paper.

Regarding ranking mechanisms for composite preferences, a similar approach
could be followed. For instance, a ranking mechanism for composite preference
Prioritized could be implemented using the same algorithm as Algorithm 1
but changing function gt<P for a function that uses the ranking mechanisms
of its composed preferences to obtain partial results and, then, composes all of
them together according to the semantics of Prioritized.

Algorithm 1 Generic ranking mechanism of atomic preferences

1: IN: A knowledge base KB , an atomic preference P = (C, <P) and a set of potential
performers R

2: OUT: A strict partially ordered set of resources POSET
3: add all resources R as nodes of POSET
4: for all r ∈ R do
5: for all r′ ∈ R \ {r} do
6: add edge r → r′ to POSET if gt<P (evalKB

P (r′), evalKB
P (r))

7: end for
8: end for

Finally, having all of these ranking mechanisms, the priority-based allocation
for an activity A of a BP just involves using the appropriate ranking mechanism
with the allocation preferences of such an activity and the set of resources se-
lected during the resource assignment as inputs. Then, from the partially ordered
set obtained by the ranking mechanism it is easy to derive a total order that
is a linear extension of the partial order using well-known topological sorting
algorithms [14]. Note that preferences define a strict partial order amongst the
resources. This means that given two resources r1 and r2 it may not be possible
to establish a preference between them. In that case, the resources are randomly
ordered.

4 Evaluation

To validate our proposal, we have developed a proof-of-concept implementation4

for priority-based allocation and we have applied it to the scenario detailed in
Section 2.1. The implementation can be divided into a domain-independent part
and a domain-specific part. The first part is based on PURI [6], a preference
framework that provides the building blocks to implement new ranking mecha-
nisms and also provides an implementation of the ranking mechanisms of all of
the composite preferences. For our proof-of-concept, we implemented the generic
ranking mechanism for both the atomic preferences and for all gt functions based
on the preference types defined in SOUP. The second part involves two steps: (1)
identifying the domain concepts used to prioritize resources and modeling the
preferences for each activity of the process, and (2) identifying the knowledge
base and implementing the eval functions to evaluate the domain concepts. We
discuss these two steps in the following.

4.1 Modeling the Preferences

Modeling the preferences specified for each of the activities of the scenario in-
volves identifying the domain concepts used to prioritize resources, and using the
SOUP metamodel to express the preferences regarding such domain concepts.

4 Available at http://www.isa.us.es/cristal

Request Report to CB/LD: Assigned to persons with position T-IAAP.

The preference is balanced between low cost and short worklist.

iaap:RequestReport a bp:Activity ;

bp:hasResourceAssignment [

a ral:Expression ;

ral:expr "HAS POSITION T-IAAP"

] ;

bp:hasPreference [

a soup:BalancedPreference ;

soup:hasOperands

[a soup:LowestPreference ; soup:refersTo org:cost] ,

[a soup:LowestPreference ; soup:refersTo worklist:size]

] .

Update Resolution Proposal: Assigned to people with positions T-IAAP,

T-CB or T-LD. The preferred person is that who did the initial proposal.

iaap:UpdateProposal a bp:Activity ;

bp:hasResourceAssignment [

a ral:Expression ;

ral:expr "HAS POSITION T-IAAP OR HAS POSITION T-CB OR

HAS POSITION T-LD"

] ;

bp:hasPreference [

a soup:FavoritesPreference ;

soup:refersTo ral:Expression ;

soup:hasFavorites "IS PERSON RESPONSIBLE FOR ACTIVITY

Create Resolution Proposal Draft"

] .

Fig. 4: Examples of preferences expressed in RDF/Turtle syntax

Due to space constraints, we illustrate how these two tasks have been done with
regard to activities Request Report to CB/LD and Update Resolution Proposal.
The same approach can be used with the remaining activities.

Fig. 4 depicts the resource assignment (bp:hasResourceAssignment) and the
preferences (bp:hasPreferences) for the aforementioned activities expressed in
SOUP using RDF/Turtle syntax. For activity Request Report to CB/LD the pref-
erence is composite because it balances two atomic preferences: lowest cost and
shortest worklist. Therefore, the composite preference is represented by means
of an element of type soup:BalancedPreference, which is the type of com-
posite preference that best suits the intention of the modeler. Regarding the
atomic preferences, they are connected with the composite preference by means
of relation soup:hasOperands. Both atomic preferences are of the same type
(soup:LowestPreference). However, the former refers to the domain concept ex-
pressed with org:cost, which represents the cost of the resource, whereas the
latter refers to the domain concept expressed with worklist:size, which rep-
resents the size of the worklist of the resource. Note that these two domain

concepts must have an eval function implemented for them so that they can be
evaluated for each resource.

The preference for activity Update Resolution Proposal is also atomic. How-
ever, it refers to the organizational information stored about each resource. In
particular, it sets a qualitative preference stating that it prefers the people that
fulfill the condition stated by property soup:hasFavorites.

4.2 Identifying the KB and Implementing eval Functions

In our scenario, there are three repositories that store the values of the proper-
ties used for the prioritization of resources. The organizational repository stores
personal information of all members of the company along with their positions,
roles, and units within the organization, information about skills, salary or hiring
date, and all the data that is not related to participation in BP activities. The
worklist repository stores the worklists of all resources in the organization. Fi-
nally, the history repository stores the event log of past process executions. The
organizational repository is manually updated, whereas the worklist repository
and the history repository are updated by the BPMS, which in our implemen-
tation is Activiti. The eval functions can be divided into the following four
categories according to the repository they use to evaluate the domain concept:

Quantitative organizational evaluations: They are used to evaluate con-
cepts that represent quantitative properties stored in the organizational
repository such as personal (e.g., age) or professional information (e.g., salary).

Qualitative organizational evaluations: They are used to evaluate concepts
that represent qualitative properties stored in the organizational repository
including organizational information and skills. The implementation of this
type of evaluations leverages CRISTAL [5] to resolve RAL expressions and
obtain the set of resources.

Worklist evaluations: They are used to evaluate concepts that represent quan-
titative properties related to the size of the worklist. They interact with the
BPMS to obtain the information about them.

History evaluations: They are used to evaluate concepts that represent quan-
titative properties about the participation of resources in past process activ-
ity executions. This evaluation also accesses the history of the BP.

5 Related Work

We next present a summary of the pros and cons of the current approaches
for preference modeling in different domains, followed by an analysis of current
support for resource prioritization in Business Process Management (BPM).

Preference Modeling. There are several formalisms that can be used to represent
preferences in different fields [15]. Quantitative preferences modeled as utility or
scoring functions have been widely used in economics and operations research [16,

17], as well as in web systems [18, 19]. This approach solves the multiple criteria
decision making by transforming it to aggregated scoring functions. However,
these functions are difficult to define by users, and not all the preferences that
are strict partial orders can be represented [20]. In artificial intelligence research,
solutions have been focused on defining preferences in a qualitative way, easier
to understand and more natural to define by humans [21]. These preference
models offer facilities to define preferences as a set of statements or terms that
are contextually related. In database research, there are also several solutions,
for instance, using top-k or skyline algorithms to obtain the best search items
according to a stated preference [22, 20]. These preference models usually offer
qualitative facilities to define preferences, though their implementation usually
leads to large result sets that do not discriminate well between items to be
ordered [15]. We have chosen SOUP [4] because it is a hybrid approach, as
it combines quantitative and qualitative facilities to define preferences. Further-
more, it is independent of the domain, so it is suitable for resource prioritization.
Indeed, the expressiveness of the model is semantically close to BP modeling,
which enables its interoperability with other resource allocation solutions.

Resource Prioritization in Business Processes. Regarding the prioritization of
resources in BPM, we have studied the support provided by the specifications
BPMN 2.0, BPEL4People and WS-HumanTask; the BPMS Activiti and YAWL
[10]; and the product suites WebSphere MQ and ARIS systems, concerning pref-
erence definition and resource ranking. We find that they neither provide support
for preference specification nor for ranking of potential performers in order to
prioritize resource allocation. Crowdsourcing systems, which outsource the exe-
cution of activities to the crowd, usually rely on a fixed set of features such as
skills, location, certification, cost or reputation to implement priotization [23],
or they use some auction or competition mechanism to select the best worker
[24]. However, the prioritization mechanism is defined in the system for all the
activities and cannot be customized according to other criteria.

The importance of ranking resources is also emphasized in other recent work.
In [25], the authors define a resource visualization concept that is aimed to sup-
port resource allocation using three different metrics to recommend work distri-
bution. The distribution of work is addressed in [26] trying to keep the balance
between quality and performance. In [27], six resource allocation mechanisms
are compared with regard to suitability, urgency, conformance and availability.
Although all of them agree on the need of dynamic work allocation to adapt to
the evoluting needs of organizations, they do not deal with preference modeling
itself. Some other solutions approach this problem from a process mining per-
spective, focusing on providing recommendation from information inferred from
event logs [28–31]. A resource manager is finally responsible for making the final
decisions for allocation. Altogether, the work presented in this paper generalizes
and complements the current support in the field of BPM regarding preference
modeling. It would be interesting to combine it, e.g., with visualization support
as proposed in [25, 31].

6 Conclusions and Future Work

In this paper, we addressed the problem of integrating priorities into resource
assignment and allocation. To this end, we extended concepts from preference
modeling and combined them with resource management techniques.

The main advantage of our solution is that it provides a mechanism to define
a wide variety of different types of preferences while being independent of both
the properties used in the preferences and the knowledge base that contains
the information about them. These features make it easier to accommodate
the different requirements several organizations may have. This is a significant
difference with respect to the support provided by current systems, which are
defined to deal with a specific set of properties. Furthermore, the expressiveness
of the preferences that can be defined with our approach outperforms the current
support in the BPM field regarding priority-based allocation.

We plan to extend the preference model to support complex cases involving
the agenda of the resources in order to allow expressing and using preferences
referring to the expected end time of an activity. We also want to explore how a
similar technique could be applied to the distribution of work to resources, i.e.,
in the opposite direction. Activity priority might be considered in that case.

References

1. N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and D. Edmond,
“Workflow Resource Patterns: Identification, Representation and Tool Support,”
in CAiSE, pp. 216–232, 2005.

2. W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: Yet Another Workflow
Language,” Inf. Syst., vol. 30, no. 4, pp. 245–275, 2005.

3. H. Tan and W. M. P. van der Aalst, “Implementation of a YAWL Work-List
Handler based on the Resource Patterns,” in CSCWD’06, pp. 1–6, 2006.

4. J. M. Garćıa, D. Ruiz, and A. Ruiz-Cortés, “A Model of User Preferences for
Semantic Services Discovery and Ranking,” in ESWC (2), vol. 6089 of LNCS,
pp. 1–14, Springer, 2010.

5. C. Cabanillas, A. del Ŕıo-Ortega, M. Resinas, and A. Ruiz-Cortés, “CRISTAL:
Collection of Resource-centrIc Supporting Tools And Languages,” in BPM 2012
Demos, vol. 940, pp. 51–56, 2012.

6. J. M. Garćıa, M. Junghans, D. Ruiz, S. Agarwal, and A. Ruiz-Cortés, “Integrating
Semantic Web Services Ranking Mechanisms Using a Common Preference Model,”
Knowledge-Based Systems, vol. 49, pp. 22–36, 2013.

7. C. Cabanillas, M. Resinas, and A. Ruiz-Cortés, “Defining and Analysing Resource
Assignments in Business Processes with RAL,” in ICSOC, vol. 7084, pp. 477–486,
2011.

8. M. Strembeck and J. Mendling, “Modeling process-related RBAC models with
extended UML activity models,” Inf. Softw. Technol., vol. 53, pp. 456–483, 2011.

9. A. Awad, A. Grosskopf, A. Meyer, and M. Weske, “Enabling Resource Assignment
Constraints in BPMN,” tech. rep., BPT, 2009.

10. M. Adams, “The Resource Service,” in Modern Business Process Automation,
pp. 261–290, 2010.

11. B. A. Davey and H. A. Priestley, Introduction to Lattices and Order (2. ed.).
Cambridge University Press, 2002.

12. C. Cabanillas, M. Resinas, and A. Ruiz-Cortés, “RAL: A High-Level User-Oriented
Resource Assignment Language for Business Processes,” in Business Process Man-
agement Workshops (BPD’11), pp. 50–61, 2011.

13. N. Russell, A. ter Hofstede, D. Edmond, and W. M. P. van der Aalst, “Workflow
Resource Patterns,” tech. rep., BETA, WP 127, Eindhoven University of Technol-
ogy, 2004.

14. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algo-
rithms. MIT press, 2001.

15. C. Domshlak, E. Hüllermeier, S. Kaci, and H. Prade, “Preferences in ai: An
overview,” Artif. Intell., vol. 175, no. 7-8, pp. 1037–1052, 2011.

16. P. C. Fishburn, Utility theory for decision making. Wiley, 1970.
17. R. L. Keeney and H. Raiffa, Decisions with multiple objectives: Preferences and

value tradeoffs. Cambridge Univ Press, 1993.
18. R. Agrawal and E. L. Wimmers, “A Framework for Expressing and Combining

Preferences,” in SIGMOD Conference, pp. 297–306, 2000.
19. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang,

“QoS-Aware Middleware for Web Services Composition,” IEEE Trans. Software
Eng., vol. 30, no. 5, pp. 311–327, 2004.

20. J. Chomicki, “Preference formulas in relational queries,” ACM Trans. Database
Syst., vol. 28, no. 4, pp. 427–466, 2003.

21. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole, “CP-nets: A
Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference
Statements,” J. Artif. Intell. Res. (JAIR), vol. 21, pp. 135–191, 2004.

22. W. Kießling, “Foundations of Preferences in Database Systems,” in VLDB,
pp. 311–322, 2002.

23. M. Vukovic, “Crowdsourcing for Enterprises,” in SERVICES, pp. 686–692, 2009.
24. B. Satzger, H. Psaier, D. Schall, and S. Dustdar, “Auction-based crowdsourcing

supporting skill management,” Inf. Syst., vol. 38, no. 4, pp. 547–560, 2013.
25. M. De Leoni, M. Adams, W. M. P. van der Aalst, and A. H. M. Ter Hofstede, “Vi-

sual support for work assignment in process-aware information systems: Framework
formalisation and implementation,” Decis. Support Syst., vol. 54, no. 1, pp. 345–
361, 2012.

26. A. Kumar, W. M. P. van der Aalst, and E. M. W. Verbeek, “Dynamic Work
Distribution in Workflow Management Systems: How to Balance Quality and Per-
formance,” J. Manage. Inf. Syst., vol. 18, no. 3, pp. 157–193, 2002.

27. H. A. Reijers, M. H. Jansen-Vullers, M. Z. Muehlen, and W. Appl, “Workflow man-
agement systems + swarm intelligence = dynamic task assignment for emergency
management applications,” in BPM, pp. 125–140, 2007.

28. T. Liu, Y. Cheng, and Z. Ni, “Mining event logs to support workflow resource
allocation,” Know.-Based Syst., vol. 35, pp. 320–331, 2012.

29. Y. Liu, J. Wang, Y. Yang, and J. Sun, “A semi-automatic approach for workflow
staff assignment,” Comput. Ind., vol. 59, no. 5, pp. 463–476, 2008.

30. S. Rinderle-Ma and W. M. P. van der Aalst, “Life-Cycle Support for Staff Assign-
ment Rules in Process-Aware Information Systems.” Department of Technology
Management, Eindhoven University of Technology, 2007.

31. R. P. J. C. Bose and W. M. P. van der Aalst, “Process Mining Applied to the
BPI Challenge 2012: Divide and Conquer While Discerning Resources,” in BPM
Workshops, pp. 221–222, 2012.

