
Quality-aware analysis in product line engineering
with the orthogonal variability model

Fabricia Roos-Frantz • David Benavides • Antonio Ruiz-Cortés •

André Heuer • Kim Lauenroth

� Springer Science+Business Media, LLC 2011

Abstract Software product line engineering is about producing a set of similar products

in a certain domain. A variability model documents the variability amongst products in a

product line. The specification of variability can be extended with quality information,

such as measurable quality attributes (e.g., CPU and memory consumption) and constraints

on these attributes (e.g., memory consumption should be in a range of values). However,

the wrong use of constraints may cause anomalies in the specification which must be

detected (e.g., the model could represent no products). Furthermore, based on such quality

information, it is possible to carry out quality-aware analyses, i.e., the product line engi-

neer may want to verify whether it is possible to build a product that satisfies a desired

quality. The challenge for quality-aware specification and analysis is threefold. First, there

should be a way to specify quality information in variability models. Second, it should be

possible to detect anomalies in the variability specification associated with quality infor-

mation. Third, there should be mechanisms to verify the variability model to extract useful

information, such as the possibility to build a product that fulfils certain quality conditions

(e.g., is there any product that requires less than 512 MB of memory?). In this article, we

present an approach for quality-aware analysis in software product lines using the

orthogonal variability model (OVM) to represent variability. We propose to map

F. Roos-Frantz (&) � D. Benavides � A. Ruiz-Cortés
Department Computer Languages and Systems, University of Seville, Avda. Reina Mercedes s/n,
41012 Seville, Spain
e-mail: fabriciaroos@us.es

D. Benavides
e-mail: benavides@us.es

A. Ruiz-Cortés
e-mail: aruiz@us.es

A. Heuer � K. Lauenroth
Paluno—The Ruhr Institute for Software Technology, University of Duisburg-Essen, Gerlingstr. 16,
45127 Essen, Germany
e-mail: andre.heuer@paluno.uni-due.de

K. Lauenroth
e-mail: kim.lauenroth@paluno.uni-due.de

123

Software Qual J
DOI 10.1007/s11219-011-9156-5

variability represented in the OVM associated with quality information to a constraint

satisfaction problem and to use an off-the-shelf constraint programming solver to auto-

matically perform the verification task. To illustrate our approach, we use a product line in

the automotive domain which is an example that was created in a national project by a

leading car company. We have developed a prototype tool named FaMa-OVM, which

works as a proof of concepts. We were able to identify void models, dead and false

optional elements, and check whether the product line example satisfies quality conditions.

Keywords Quality modelling � Software product lines � Quality-aware analysis �
Automated analysis � Orthogonal variability model

1 Introduction

Software product line engineering (SPLE) is a paradigm for producing a family of products

that share more commonalities than variabilities. This paradigm usually consists of two

development processes, namely: domain engineering and application engineering (Pohl

et al. 2005). In domain engineering, the common software artefacts are designed and

developed for reuse. In application engineering, the specific products are derived by

reusing a set of the aforementioned domain artefacts.

Variability models are central artefacts in all activities of the SPLE. A variability model

documents the variability amongst products in the product line, i.e., rules that constrain the

possible configurations of artefacts in a product (Chen et al. 2009; Sinnema and Deelstra

2007; Kang et al. 1990). The configuration of an individual product is done by selecting

options in the variability model. Over the past years, several variability modelling tech-

niques have been developed in order to document and manage variability, such as feature

modelling, decision modelling and orthogonal variability modelling (Sinnema and Deelstra

2007; Chen et al. 2009). The analysis of variability models deals with the computer-aided

extraction of valuable information from variability models (Benavides et al. 2010).

The specification of variability can be extended with measurable quality attributes (e.g.,

CPU and memory consumption) and constraints on these attributes, in order to express

quality information about different products (Benavides et al. 2010). For example, in cases

where there are limitations of resources such as memory capacity and CPU time, the

derivation of products that do not satisfy those conditions must be avoided. When quality

information is added to a variability model, a quality-aware analysis can be performed. In

SPLE, quality-aware analysis is an essential activity to guarantee that the derived software

products reach the desired quality. In SPLE, early quality analysis is particularly important,

since any anomaly should be identified before the derivation of specific products. The

wrong use of constraints may cause anomalies in the specification, leading to contradictory

or to misleading information about the scope of the product line. Such anomalies should be

detected and avoided to assure that desired products can be configured. If any anomaly is

not detected early, all products that were developed based on the anomalous domain

artefacts have to be corrected. This can lead to high cost and effort (Pohl et al. 2005).

Currently, there are some approaches that extend feature models with quantitative

attributes and constraints (Benavides et al. 2005, 2010). However, quality information

associated with the orthogonal variability model (OVM) (Pohl et al. 2005; Metzger et al.

2007) has not been explored in the literature before. The challenge of quality-aware

analysis in SPLE using OVM is threefold. First, a way of expressing quality information

has to be provided. Second, possible anomalies in the model should be detected. Third, the

Software Qual J

123

variability model should be verified to extract useful information, such as, the possibility to

build a product that fulfils certain quality conditions (e.g., is there any product that requires

less than 512 MB of memory?).

Our main contributions are as follows:

1. To address the first challenge, we present a way to relate the OVM and quality

information, which we refer to as OVM ? u. In our approach, quality information

consists of quality attributes and constraints on these attributes. Therefore, the

approach allows modellers to specify levels of quantitative quality attributes for

products in SPLE with OVM. These quality attributes are related to the elements that

represent variability in the OVM.

2. To address the second challenge, we provide an automated way to detect anomalies in

OVMQ ? u, which is made up of the relationship between OVM and quality

information. We support three kinds of anomalies: void model, dead elements and

false optionals. To automate anomaly detection, we present a mapping from

OVMQ ? u to a constraint satisfaction problem. Then, we use an off-the-shelf

constraint solver to implement the detection.

3. To address the third challenge, we provide an automated way to carry out analysis

operations on SPLE using OVM. We provide analysis operations that can be used to

verify quality conditions, ask for an optimal product or the most representative one. A

quality condition is any constraint that restricts the value of quality attributes.

4. We have developed a prototype tool named FaMa-OVM, which works as a proof of

concepts of our approach. The approach was able to identify void models, as well as

dead and false optional elements for our product line example, which is a non-trivial

example. It was also possible to identify whether this product line satisfies quality

conditions. Furthermore, we discuss the limitations of our approach.

In this article, we motivate the quality-aware analysis of software product lines by using

an example of a radio frequency warner (RFW) product line in the automotive domain.

This example was created in a national project by a leading car company. In the example,

we use the OVM for variability modelling.

In Fig. 1, we show an overview of our approach. An OVM represents a set of possible

products. When an OVM is associated with quality information (i.e., quality attributes and

constraint on these attributes) which we refer to as OVMQ ? u, the set of products can be

reduced since not all of them satisfy the required quality.1 Based on this new set of

products which takes quality information into account, the engineers of the product line

can carry out quality-aware analysis. On the one hand, the OVMQ ? u specification can

be analysed in order to verify possible anomalies. On the other hand, engineers can execute

analysis operations to analyse OVMQ ? u. These operations can use as input a quality

condition defined by the engineers, i.e., restrictions on the set of products of OVMQ ? u.

These quality conditions restrict the set of products even more.

The remainder of this article is organised as follows: Sect. 2 gives an overview of

variability modelling techniques, particularly feature models and OVM. Section 3 presents

our RFW motivating example. Section 4 discusses how we specify quality information in

SPLE using OVM. Section 5 introduces analysis operations that can be performed on

OVMQ ? u, describes the process we use for the automated analysis of OVMQ ? u and

reports on the mappings from the OVMQ ? u to a constraint satisfaction problem. Section

6 defines and discusses analysis that extracts information from OVMQ ? u. Section 7

1 In some cases the number of products could increase, we discuss this in Sect. 9

Software Qual J

123

comments on our tool support, FaMa-OVM, and discusses the obtained analysis results.

The related work is discussed in Sect. 8 and, finally, we discuss limitations and draw our

conclusions in Sect. 9.

2 Background

In SPLE, variability models document the variability in a product line. They provide a set

of options that must be selected during derivation of a specific product. Besides, they

provide a mechanism to specify rules that constrain the combination of such options. These

constraints may come from technical restrictions or any domain decisions. The configu-

ration of products is done by selecting desired and valid options in the variability model

during application engineering.

Amongst the most popular variability modelling techniques is feature modelling, which

captures the set of possible products of a product line in a feature model. The first feature

model was proposed in 1990 by Kang et al. (1990) as part of the feature-oriented domain

analysis (FODA) method. Since then, several extensions of FODA have been proposed.

2.1 Feature models

Besides documenting variability, feature models also express the commonalities of the

product line, i.e., the features that are common to all products. A feature is an increment in

program functionality (Batory et al. 2006). Feature models are used to represent product

lines by means of a hierarchical decomposition of features, which yields a feature tree. A

feature model is composed of two main elements: features and relationships between them,

with one of these features being the root. Constraints of the type requires and excludes
between features can be added, leading to additional complexity, thus resulting in a

directed acyclic graph.

Fig. 1 The approach

Software Qual J

123

A common graphical notation is depicted in Fig. 2. This feature model example defines

a product line, in which every product contains two mandatory features, A and G. Fur-

thermore, the product line has (i) one optional feature, D, which can be selected or left out

at will; (ii) the grouped features E and F that are possible choices of their parent feature

(D), in which the alternative relationship defines that one and only one of these grouped

features can be selected, and (iii) the grouped features B and C that are possible choices of

their parent feature (A) with the Or relationship defining that one or more features of the

group must be selected. In addition, the constraints requires and excludes impose limita-

tions on the possible combinations of features. In this case, the requires relationship defines

that, when C is selected, E must be selected as well. The area limited by the grey colour

illustrates the features that are common to all products of the product line.

2.2 Extended feature models

Some authors have identified the need to extend feature models with extra-functional

information such as memory consumption, binary size and development cost (Benavides

et al. 2005; Kang et al. 1998; Czarnecki et al. 2005). The purpose of this extension is to

add measurable information about the features, which is done by introducing attributes to

features. By means of these attributes, it is possible to specify quantitative information

required to support the feature. As stated by Benavides et al. (2010), there is no consensus

on a notation to define attributes. However, most proposals agree that an attribute should

Fig. 2 A feature model example

Fig. 3 A sample of a feature model with attributes

Software Qual J

123

consist of a name, a domain and a value. Figure 3 shows an example of an extended feature

model using the notation proposed by Benavides et al. (2005).

This extension enables the inclusion of more complex constraints amongst features and

attributes. For example, it is possible to specify constraints like: ‘‘If feature B and feature C
are selected, then memory of feature E must be higher than 64’’.

2.3 Orthogonal variability model

OVM is a modelling language to define the variability in a software product line in an

orthogonal way; in other words, it provides a cross-sectional view of the variability across

all product line artefacts (Pohl et al. 2005, p. 75). OVM interrelates the variability in base

models such as requirement models, design models, component models and test models

(see Fig. 4). The traceability between OVM and the different types of base models is

established through artefact dependencies (dashed lines in Fig. 4). In the following, we

provide an overview of the OVM. For a complete formal definition of the OVM, we refer

the reader to (Metzger et al. 2007).

An OVM is composed of two main elements: variation points (VP) and variants (V). In

this article, we refer to these OVM elements as variable elements. A variation point

documents the aspects that can vary in a product line and are chosen by the customer or

engineer of the software product line. A variant is related to a variation point and docu-

ments how this variation point can vary. We refer to the variation point and variant

relationship as parent–child relationship.

Figure 5 shows an example of an OVM. The variation points have at least one child, and

each variant has at most one parent. Furthermore, two types of variation points are dis-

tinguished, e.g.,VP1 and VP2 in Fig. 5.

Although feature models are similar to OVMs, they differ mostly in two aspects: in their

structure and in the way they relate to quality information. A feature model is only

composed of features organised in a single tree and have a single root feature, whilst an

OVM is composed of variation points and variants organised in one or more two-level

trees. In feature models, the root feature is always mandatory, i.e., it is part of all products,

and therefore, there is no empty product. On the other hand, in OVMs, variation points can

be optional. This allows configuring a product without any variant or variation point.

Regarding the second aspect, feature models provide possibility to annotate quality

information in the same model, whilst in OVMs, it should be external to the model. We

elaborate on this topic in Sect. 4.

Fig. 4 Orthogonality of OVM
(based on Metzger and Pohl
2007)

Software Qual J

123

3 Radio frequency warner system: motivating example

The RFW product line is used as the motivating example in this article. The aim of systems

derived from the RFW product line is to give hints of relevant traffic signs to a driver of a

car or truck. The motivation for developing such a product line is the increasing com-

plexity of today’s traffic.

The product line is based on the fictional assumption that all traffic signs are equipped

with a radio-frequency identification (RFID) tag. This allows the identification of traffic

signs when approaching a sign. The transmitted data include the type of sign (maximum

speed, no overtaking, etc.) and the direction of the sign. The functionality of the RFW is

realised by a control unit in the car that interacts with other components in the car such as

the display and sound system.

An illustration of the functionality of the RFW system can be found in Fig. 6: the car is

arriving from the east heading to west. Four different signs are in the area: a stop sign, a

do-not-enter sign, a no-trucks sign, and a no-parking sign. All these signs are equipped

with an active RFID transmitter, and each sign knows its direction:

– the stop sign is relevant for all vehicles approaching from the east;

– the do-not-enter sign is relevant for all vehicles approaching from the east and west;

– the no-parking sign is relevant for all vehicles approaching from the west;

– the no-trucks sign is relevant for all trucks approaching from the west and the east.

The information about the direction is encoded in the signal of the traffic signs. If the

car, for example, heads to the west, it will receive the signals of all signs. The RFW

processes the signals and dismisses the no-parking sign, because it is only relevant for

the opposite direction. It signals the stop sign to the driver, since this is the nearest sign

to the car that is relevant. During the trip, the RFW system will also show the do-not-

enter sign. The no-trucks sign is dismissed for the car. The truck, for example, that is

approaching from the west receives the same signals including the no-parking sign in the

opposite order, but the RFW does not dismiss the no-trucks sign, because it is relevant

for the truck driver.

Fig. 5 OVM notation

Software Qual J

123

3.1 System components

An overview of the system can be found in Fig. 7. Roughly speaking, the system consists

of three components: the RFW display, RF-receiver unit and the RFW control unit. They

communicate via a controller area network (CAN) which is a standard interface in the

automotive area, standardised by ISO (ISO 11898). However, the CAN is used as a

transparent transport gateway. The components can be characterised as follows:

– RFW control unit: the control unit is the main part of the system. It receives the signals

of the RF receiver and reacts specifically based on a set of rules.

– Discard switch: the discard switch marks the current signal to be discarded. When

the user presses the button, the actual symbol in the display is discarded and the

actual warning sound is stopped, and all upcoming signs with the same RFID are

dismissed for the next 60 s

– On/Off switch: the On/Off switch activates and deactivates the RFW system.

– RFW display: the RFW display shows the output of the RFW control unit.

– RF receiver unit: the RF receiver unit receives the signals and sends them to the RFW

control unit.

Fig. 6 Functionality of the radio frequency warner

Fig. 7 Radio frequency warner
system overview

Software Qual J

123

– Antenna: the antenna of the RF-receiver unit receives the signals of the active RFID

transmitters and decodes them.

3.2 RFW product line

In order to provide a RFW system to customers with different needs, the RFW product line

has been created. Figure 8 shows an excerpt of the OVM corresponding to the RFW

product line. In this figure, the variation points VP7:Other signs, VP8:Prohibi-
tion signs, VP9:Warning signs and VP10:Signs giving orders subsume

the different categories of signs that can be detected. For simplification, we show only two

signs for each category. The complete OVM diagram with all variation points and variants

can be found in ‘‘Appendix’’, Fig. 19. It should be noted that in this figure, we are omitting

several requires and excludes dependencies since it would be too confusing to show all of

them. We present the list of these constraints in ‘‘Appendix’’, Table 8.

The main differentiation of the RFW system is made in variation point VP1:Type of
vehicle. There, one of four different vehicle types has to be chosen. The variation point

VP2:Activation determines whether the RFW is switchable (i.e., whether it has a

Fig. 8 Excerpt of the RFW orthogonal variability model

Software Qual J

123

switch to turn it on or off) or whether it is turned on instantly and continuously. The

variation point VP3:comfort functions determines the additional functionality of

the RFW. The following comfort functions are available:

– V7:No stopping warning: warns the driver if there is an active no stopping sign

at the current position and therefore stopping is forbidden.

– V8:Overspeed warning: warns the driver if there is a speed limit is in effect and

the car is too fast. This requires additional information about the current speed that

needs to be received via CAN.

– V9:Sound at warning sign: if the car passes a warning sign, the RFW system

warns the driver acoustically.

– V10:Hazardous situation alarm: warns the driver in a hazardous situation

and may take over control, e.g., by initiating an emergency brake. This detection

requires much external information, e.g., the actual speed, lateral acceleration, status of

the wheels (i.e., blocking, slippage etc.).

The variation point VP4:Behaviour at warning signs determines the behav-

iour, if a relevant warning sign is passed. The system can show the warning sign in the

display and it can additionally sound an acoustic warning. The behaviour of the RFW

system at a relevant stopping sign is determined by the variation point VP5:Behaviour
at no stopping sign. The system may warn the driver or not.

The behaviour in a hazardous situation is defined by the variation point

VP6:Behaviour in hazardous situations. The RFW can show a warning in the

display and it can additionally warn the driver with an acoustic signal. Additionally, the

system can initiate an emergency brake.

Although the above specification of RFW variability is quite important to guarantee that

different customer needs are satisfied by the product line, it does not provide extra-

functional information, which is also relevant when developing software products. To

satisfy quality conditions regarding, for instance, development cost, memory consumption,

or any other quality, this is not enough. Extra-functional information must be specified and

related to the RFW variability. Based on this specification, a quality-aware verification can

be performed to ensure that all products fulfil the stakeholders needs. In order to specify

quality information for the RFW product line, to relate it to the variability, and to verify

that its products satisfy the quality conditions, some challenges arise. These are described

in the next section.

4 Expressing quality information

In the RFW product line, we have identified many variation points regarding functionalities

of the product line systems, but no quality information. Quality information such as the

specification of the development cost of the comfort function or the power of the sensor

required by different signals cannot be expressed directly in the OVM.

In feature models, the attributes annotate features with quality information (see Fig. 3).

In the OVM, this is different, since OVM documents the variability in base models. There

are two different possibilities when relating quality information with the OVM which

represent two different problems: (i) the OVM is directly related to a quality model

including quality information, considering this model as a base model in the OVM ter-

minology, see Fig. 9a; (ii) the quality information refers to a base model (e.g., architecture,

Software Qual J

123

requirements or configuration models) so the OVM is not directly related to a quality

model, see Fig. 9b. In this article, we address the second problem.

In the following, we consider the case that the base model would be a configuration

model, and this model is related to quality information. Roughly speaking, a configuration

model is made up of a set of components (e.g., features or variants) and rules that constrain

the possible combinations of these components. We assume that rules can be represented in

an OVM, and that the relationship between elements in both models (OVM and config-

uration model) is one-to-one (see discussion in Sect. 9). The specific configuration model

depends on the language used to model the configuration problem (Finkel and O’Sullivan.

2011; Felfernig et al. 2000). As our approach is independent of the configuration model

used and for the sake of simplicity, we omit the configuration model from the subsequent

figures and text. We relate the OVM directly to quality information, hereafter called

OVMQ ? u (see Fig. 10), still considering the second problem described in the previous

paragraph, i.e., we are still not documenting the variability in a quality model.

Although it is out of the scope of this article to provide a rigorous syntax and semantics

of a language to define quality information in OVMs (this would require a parallel research

stream), we assume that such information can be mapped into a constraint satisfaction

problem (CSP), thus enabling the automation of our approach. A CSP is defined as a set of

variables, a set of domains for those variables, and a set of constraints restricting the values

of those variables (Tsang 1993). For example, suppose x1, x2, x3 are variables of a CSP,

all with domains in [1, 2, 3], and (x1 = x2), (x2 \ x3) being the constraints. A solution to

this CSP is an assignment to every variable of some value in its domain such that it does

not violate any of the constraints. Therefore, a possible solution to this CSP is

((x1 = 1), (x2 = 1), (x3 = 2)).

In Fig. 11, we provide a high-level conceptual model for describing the main elements

of a quality information language such as the one we use in our approach. A quality

(a)

(b)

Fig. 9 a OVM documenting variability in a quality model; b OVM documenting variability in a
configuration model that has quality information

Software Qual J

123

information language is represented by a set of attributes with their respective domains,

and/or a set of constraints on these attributes. In the following, we describe these elements

and how they are related to the OVM.

4.1 Quality attributes

In our approach, we define a quality attribute as a measurable property of an artefact. We

consider only those properties that can be quantified and technically defined. For example,

the memory consumption or the accuracy of an antenna. As stated by Benavides et al.

(2010), most proposals agree that an attribute should consist of a name, a domain and a

value. We have relied on this statement to specify the attributes used in our approach. An

attribute has a name , a domain, a value, a nullValue, and unit. name denotes the name

of the attribute which does not need to be unique since different artefacts can have different

attributes with the same name. domain denotes the range of values that the attribute may

hold such as Reals, Integers, and any range (e.g., [1…512]); value denotes the attribute

value which will depend on the concrete type of attribute (we elaborate more on it later).

nullValue denotes the value that must be taken by the attribute when the variant with

Fig. 10 OVMþ u: relationship between OVM and quality information

Fig. 11 Conceptual model for describing quality information

Software Qual J

123

which the attribute is related is not selected. unit denotes a determinate quantity such as

metres, seconds, currency and kilobytes, adopted as a standard for measurement.

We distinguish two kinds of attributes depending on how their values are calculated:

– Basic attribute. The value of a basic attribute is a base measure (Garcia et al. 2006),

i.e., a measure that does not depend upon any other measure.

– Derived attribute. The value of a derived attribute is determined by a function over

other attribute values.

An attribute can be related to zero or more variable element in the OVM. In the same

manner, a variable element can be related to zero or more attributes. We refer to an

attribute as a global attribute when it is not related to a variable element in the OVM; it is a

composition of any other attributes. We refer to a relationship between a variable element

and an attribute as variable-element.attribute, where variable-element denotes the name

of the variable element which must be unique and attribute denotes the name of the

attribute. For example, V53:GPS.Accuracy defines the relationship between V53:GPS
and Accuracy.

To illustrate quality attributes, we use the example in Fig. 12. In this example, we can

see that the RFW product line offers two different types of positioning systems: V53:GPS
and/or V54:Galileo. The positioning systems have different accuracies, thus we define

Fig. 12 Example of basic, derived, and global attribute

Software Qual J

123

a basic attribute to express their accuracy. The GPS system has an accuracy of 8 m, whilst

Galileo has 4 m of accuracy.

In Fig. 12, there are two derived attributes: Accuracy and AccuracyFactor,

related to VP12:PositioningSystem, and VP13:Antenna, respectively. The for-

mer expresses the system accuracy regarding the type of positioning system selected, and it

is the minimum value between V53:GPS.Accuracy and V54:Galileo.Accuracy;

the latter expresses the accuracy factor of the selected antenna which is obtained by the

maximum value between Small.AccuracyFactor, Medium.AccuracyFactor
and Big.AccuracyFactor. Finally, the TotalAccuracy is a global attribute

because it is not connected to any variable element. The global attribute represents a

quality property of the product line as a whole. Thus, in the case of TotalAccuracy, it

represents the resulting accuracy of the system, which is the product of the selected

positioning system accuracy and the selected quantifier. With this specification, it would,

for example, be possible to get the same overall accuracy with a bigger antenna and GPS

and a medium size antenna and Galileo.

The function used to calculate the values of derived attributes depends on the solver

used to automate the approach; furthermore, it is domain dependent. The resulting value of

a function depends on whether the variable element related to it is selected or not.

Therefore, when an attribute is involved in a function, its nullValue must be neutral to such

a function. Each function must be handled specifically and suitable neutral values must be

defined. Let us observe, for example, the function defined in the VP12:Position-
ingSystem.Accuracy attribute. In the case where both positioning systems,

V54:Galileo and V53:GPS, are selected, the function will return the minimum value

between their accuracy, resulting in value 4. However, if one of the variants is not selected,

for example V53:GPS, the value of V53:GPS.Accuracy must have a neutral value

with regard to the min function. In this case, we can use the ?? as a neutral value because

it is bigger than any real number. In the RFW example, we use aggregate functions such as

sum, min and max and also functions with the operators ? and *.

The list of attributes identified for the RFW product line and their descriptions can be

found in Table 1. Their values are not shown in this table because they depend on the

association with the variable elements in the OVM. The values are shown in Tables 2, 3,

and 4; they were defined by the engineers of the RFW product line. Table 2 shows the

values taken by the basic attributes. The variants are listed in the first column of the table,

and the attribute names are listed along the first row. The cells indicate the values taken by

each attribute when related to the corresponding variant. They are shown in the form

value|neutral-value. Cells marked with ‘‘–’’ indicate that the attribute is not related to the

variant.

In the RFW example, all derived attributes are related to variation points. Their values

are shown in Table 3. The variation points are listed in the first column, and the attribute

names are listed along the first row. The cells indicate which function is used to calculate

each attribute value when related to the corresponding variation point. Those cells marked

with ‘‘–’’ indicate that the attribute is not related to the variation point. Values are shown in

the form value|neutral-value. As these attributes are involved in the values of the global

attributes (see Table 4), their null values are defined as ??, - ? or 0. In the case that

the variation point is selected, the attributes can take as values the functions min, max or

sum. They are defined as follows:

– minðv1:attribute; . . .; vn:attributeÞ;wherefv1; . . .; vng � childrenOf ðvpÞ
– maxðv1:attribute; . . .; vn:attributeÞ;wherefv1; . . .; vng � childrenOf ðvpÞ

Software Qual J

123

Table 1 Quality attributes in the RFW product line

Name Description Domain Unit

1. Accuracy Specifies the accuracy of the
positioning system to locate the
position of the car

Integer [1…10] Metres

2. AccuracyFactor Specifies a quantifier for the antenna Real [0…2] Metres

3. TotalAccuracy Specifies the accuracy offered by the
system. It is calculated by relating
the accuracy and the
accuracyFactor attributes

Real [0…20] Metres

4. Memory Specifies the memory size of the
control unit that is needed to
process the traffic sign

Integer [1…512] Kilobytes

5. TotalMemory Specifies the total of memory
required by a system. It is
calculated by aggregating the
memory attributes

Integer [1…512] Kilobytes

6. ROM Specifies the ROM size of the control
unit utilised by a specific variant

Integer [1…512] Kilobytes

7. TotalROM Specifies the ROM size of the control
unit. The more traffic signs are
recognisable, the bigger the ROM
size has to be to save the different
types of signs and the required
action for the traffic sign. It is
calculated by aggregating the ROM
attributes

Integer [1…512] Kilobytes

8. Range It concerns the power of a sensor and
specifies the distance from which
the sensor is capable to detect a
traffic sign. The higher the value is,
the earlier a traffic sign can be
detected

Integer Metres

9. Latency Specifies the latency required by a
variant. Latency means the elapsed
time between the firing of an event
and the feedback given to the user.

Integer [200…800] Milliseconds

10. TotalLatency Specifies the latency that has to be
guaranteed by the system. It is
calculated by aggregating the
latency attributes

Integer [200…800] Milliseconds

11. Cost Cost of the specific variant Real [1…500] Monetary unit

12. TotalCost Specifies the total cost of a system. It
is calculated by aggregating the
cost attributes

Real [1…500] Monetary unit

13. Cycle Specifies the maximum recognition
time required by a variant.

Integer [10…500] Milliseconds

14. RecognitionTime Specifies the maximum recognition
time that the system has to ensure.
It is calculated by aggregating the
cycle attributes

Integer [10…500] Milliseconds

Software Qual J

123

T
a

b
le

2
V

al
u

es
o

f
b

as
ic

at
tr

ib
u
te

s
w

h
en

as
so

ci
at

ed
w

it
h

v
ar

ia
n

ts

A
cc

u
ra

cy
A

cc
u
ra

cy
fa

ct
o
r

M
em

o
ry

R
O

M
R

an
g
e

L
at

en
cy

C
o
st

C
y
cl

e

V
5

:S
w

it
ch

ab
le

–
–

2
|

0
2

|
0

–
–

2
|

0
–

V
6

:C
o

n
ti

n
o

u
sl

y
–

–
2

|
0

2
|

0
–

–
0

.2
|

0
–

V
7
:N

o
st

o
p
p
in

g
w

ar
n
in

g
–

–
–

8
|

0
–

–
0
.5

|
0

–

V
8
:O

v
er

sp
ee

d
w

ar
n
in

g
–

–
–

1
6

|
0

–
–

0
.5

|
0

–

V
9

:S
o

u
n

d
at

w
ar

n
in

g
si

g
n

s
–

–
–

4
|

0
–

–
1

|
0

–

V
1
0
:H

az
ar

d
o
u
s

si
tu

at
io

n
al

ar
m

–
–

–
1

6
|

0
–

–
1

|
0

–

V
1

1
:S

h
o

w
w

ar
n

in
g

si
g

n
–

–
2

|
0

4
|

0
–

4
0

0
jþ
1

1
|

0
–

V
1

2
:D

is
p

la
y

an
d

so
u

n
d

in
d
ic

at
io

n
–

–
2

|
0

4
|

0
–

4
0

0
jþ
1

1
|

0
–

V
1

3
:W

ar
n

fo
r

n
o

st
o

p
p

in
g

si
g

n
–

–
2

|
0

4
|

0
–

5
0

0
jþ
1

0
.5

|
0

–

V
1

4
:N

o
w

ar
n
in

g
–

–
2

|
0

0
|

0
–

5
0

0
jþ
1

0
.2

|
0

–

V
1

5
:S

h
o

w
o

n
d

is
p

la
y

–
–

8
|

0
8

|
0

–
3

5
0
jþ
1

1
|

0
–

V
1

6
:D

is
p

la
y

an
d

so
u

n
d

in
d
ic

at
io

n
–

–
8

|
0

8
|

0
–

3
5

0
jþ
1

1
|

0
–

V
1

7
:E

m
er

g
en

cy
b

ra
k

e
–

–
1

6
|

0
3

2
|

0
–

3
5

0
jþ
1

3
|

0
–

V
1

8
:R

o
ad

w
/

ri
g

h
t

o
f

w
ay

st
ar

t
–

–
4

|
0

4
|

0
–

–
0

.2
|

0
1

0
0
jþ
1

V
1

9
:C

it
y

li
m

it
–

–
2

|
0

4
|

0
–

–
0

.2
|

0
5

0
jþ
1

V
2

0
:C

ro
ss

ro
ad

s
–

–
2

|
0

4
|

0
–

–
0

.2
|

0
1

0
0
jþ
1

V
2

1
:H

o
m

e
zo

n
e

en
tr

y
–

–
4

|
0

4
|

0
–

–
0

.2
|

0
1

0
0
jþ
1

V
2

2
:R

o
ad

w
/

ri
g

h
t

o
f

w
ay

en
d

–
–

4
|

0
4

|
0

–
–

0
.2

|
0

1
0

0
jþ
1

V
2

3
:E

n
d

o
f

ci
ty

li
m

it
–

–
4

|
0

4
|

0
–

–
0

.2
|

0
5

0
jþ
1

V
2

4
:T

ra
ffi

c
h

as
p

ri
o

ri
ty

–
–

2
|

0
4

|
0

–
–

0
.2

|
0

7
5
jþ
1

V
2

5
:H

o
m

e
zo

n
e

en
d

–
–

4
|

0
4

|
0

–
–

0
.2

|
0

1
0

0
jþ
1

V
2

6
:N

o
v

eh
ic

le
s

–
–

2
|

0
4

|
0

–
–

0
.2

|
0

5
0
jþ
1

V
2

7
:N

o
ca

rs
–

–
2

|
0

4
|

0
–

–
0

.2
|

0
1

0
0
jþ
1

V
2

8
:N

o
v

eh
ic

le
s

o
v

er
m

ax
w

id
th

[
X

m
–

–
8

|
0

8
|

0
–

–
0

.2
|

0
2

0
0
jþ
1

V
2

9
:N

o
v

eh
ic

le
s

w
/

w
ei

g
h

t[
3

.5
t

–
–

2
|

0
4

|
0

–
–

0
.2

|
0

1
0

0
jþ
1

Software Qual J

123

T
a

b
le

2
co

n
ti

n
u
ed

A
cc

u
ra

cy
A

cc
u
ra

cy
fa

ct
o
r

M
em

o
ry

R
O

M
R

an
g
e

L
at

en
cy

C
o
st

C
y
cl

e

V
3

0
:N

o
v

eh
ic

le
s

o
v

er
m

ax
g

ro
ss

w
ei

g
h
t

g
[

X
t

–
–

8
|

0
8

|
0

–
–

0
.2

|
0

2
0

0
jþ
1

V
3

1
:D

o
n

o
t

en
te

r
–

–
2

|
0

4
|

0
–

–
0

.2
|

0
1

0
0
jþ
1

V
3

2
:N

o
v

eh
ic

le
s

o
v

er
m

ax
h

ei
g

h
t

h
[

X
m

–
–

8
|

0
8

|
0

–
–

0
.2

|
0

2
0

0
jþ
1

V
3

3
:N

o
st

o
p

p
in

g
–

–
2

|
0

4
|

0
–

–
0

.2
|

0
1

0
0
jþ
1

V
3

4
:D

an
g

er
–

–
2

|
0

4
|

0
–

–
0

.5
|

0
1

0
0
jþ
1

V
3

5
:S

id
e

w
in

d
s

–
–

2
|

0
4

|
0

–
–

0
.5

|
0

1
0

0
jþ
1

V
3

6
:S

li
p

p
er

y
ro

ad
–

–
2

|
0

4
|

0
–

–
0

.5
|

0
1

0
0
jþ
1

V
3

7
:R

is
k

o
f

ic
e

–
–

2
|

0
4

|
0

–
–

0
.5

|
0

1
0

0
jþ
1

V
3

8
:B

en
d

–
–

2
|

0
4

|
0

–
–

0
.5

|
0

1
0

0
jþ
1

V
3

9
:T

ra
ffi

c
q

u
eu

es
–

–
2

|
0

4
|

0
–

–
0

.5
|

0
1

0
0
jþ
1

V
4

0
:S

to
p

an
d

g
iv

e
w

ay
–

–
2

|
0

4
|

0
–

–
0

.2
|

0
5

0
jþ
1

V
4

1
:N

o
o

v
er

ta
k
in

g
–

–
4

|
0

4
|

0
–

–
0

.2
|

0
5

0
jþ
1

V
4

2
:N

o
o

v
er

ta
k
in

g
en

d
–

–
4

|
0

4
|

0
–

–
0

.2
|

0
5

0
jþ
1

V
4

3
:N

o
o

v
er

ta
k
in

g
v

eh
ic

le
s
[

3
.5

t
–

–
4

|
0

4
|

0
–

–
0

.2
|

0
5

0
jþ
1

V
4

4
:E

n
d

o
f

p
ro

h
ib

it
io

n
s

–
–

4
|

0
4

|
0

–
–

0
.2

|
0

5
0
jþ
1

V
4

5
:Y

ie
ld

–
–

2
|

0
4

|
0

–
–

0
.2

|
0

5
0
jþ
1

V
4

6
:M

ax
im

u
m

sp
ee

d
X

K
m

/h
–

–
8

|
0

8
|

0
–

–
0

.2
|

0
2

0
0
jþ
1

V
4

7
:O

n
e

w
ay

–
–

2
|

0
4

|
0

–
–

0
.2

|
0

5
0
jþ
1

V
4

8
:M

ax
im

u
m

sp
ee

d
o

f
X

K
m

/h
en

d
–

–
8

|
0

8
|

0
–

–
0

.2
|

0
2

0
0
jþ
1

V
4

9
:N

o
o

v
er

ta
k
in

g
v

eh
ic

le
s
[

3
.5

t
en

d
–

–
4

|
0

4
|

0
–

–
0

.2
|

0
5

0
jþ
1

V
5

0
:L

o
w

–
–

–
–

2
0
j�
1

–
1

0
|

0
–

V
5

1
:M

ed
iu

m
–

–
–

–
4

5
j�
1

–
3

5
|

0
–

V
5

2
:H

ig
h

–
–

–
–

7
0
j�
1

–
5

0
|

0
–

V
5

3
:G

P
S

8
jþ
1

–
–

–
–

–
–

–

V
5

4
:G

al
il

eo
4
jþ
1

–
–

–
–

–
–

–

Software Qual J

123

T
a

b
le

2
co

n
ti

n
u
ed

A
cc

u
ra

cy
A

cc
u
ra

cy
fa

ct
o
r

M
em

o
ry

R
O

M
R

an
g
e

L
at

en
cy

C
o
st

C
y
cl

e

V
5

5
:S

m
al

l
–

1
.5
j�
1

–
–

–
–

1
5

|
0

–

V
5

6
:M

ed
iu

m
–

1
j�
1

–
–

–
–

0
.5

|
0

–

V
5

7
:B

ig
–

0
.2

5
j�
1

–
–

–
–

5
0

|
0

–

Software Qual J

123

T
a

b
le

3
V

al
u

es
o

f
d

er
iv

ed
at

tr
ib

u
te

s
w

h
en

as
so

ci
at

ed
w

it
h

v
ar

ia
ti

o
n

p
o

in
ts

A
cc

u
ra

cy
A

cc
u

ra
cy

fa
ct

o
r

M
em

o
ry

R
O

M
R

an
g

e
L

at
en

cy
C

o
st

C
y

cl
e

V
P

2
:A

ct
iv

at
io

n
–

–
su

m
|

0
su

m
|

0
–

–
su

m
|

0
–

V
P

3
:C

o
m

fo
rt

fu
n

ct
io

n
s

–
–

–
su

m
|

0
–

–
su

m
|

0
–

V
P

4
:B

eh
av

io
u

r
at

w
ar

n
in

g
si

g
n

s
–

–
su

m
|

0
su

m
|

0
–

m
in
jþ
1

su
m

|
0

–

V
P

5
:B

eh
av

io
u

r
at

n
o

st
o

p
p

in
g

si
g

n
s

–
–

su
m

|
0

su
m

|
0

–
m

in
jþ
1

su
m

|
0

–

V
P

6
:B

eh
av

io
u

r
in

h
az

ar
d

o
u

s
si

tu
at

io
n

s
–

–
su

m
|

0
su

m
|

0
–

m
in
jþ
1

su
m

|
0

–

V
P

7
:O

th
er

si
g

n
s

–
–

su
m

|
0

su
m

|
0

–
–

su
m

|
0

m
in
jþ
1

V
P

8
:P

ro
h

ib
it

io
n

si
g
n

s
–

–
su

m
|

0
su

m
|

0
–

–
su

m
|

0
m

in
jþ
1

V
P

9
:W

ar
n

in
g

si
g
n

s
–

–
su

m
|

0
su

m
|

0
–

–
su

m
|

0
m

in
jþ
1

V
P

1
0
:S

ig
n

s
g

iv
en

o
rd

er
s

–
–

su
m

|
0

su
m

|
0

–
–

su
m

|
0

m
in
jþ
1

V
P

1
1
:S

en
so

r
p

o
w

er
–

–
–

–
m

ax
j�
1

–
su

m
|

0
–

V
P

1
2
:P

o
si

ti
o

n
in

g
sy

st
em

m
in
jþ
1

–
–

–
–

–
–

–

V
P

1
3
:A

n
te

n
n

a
–

m
ax
j�
1

–
–

–
–

su
m

|
0

–

Software Qual J

123

–
Pn

i¼1

vi:attribute;wherefv1; . . .; vng � childrenOf ðvpÞ

Consider that childrenOf(vp), with vp belonging to the set of variation points returns the

set of children of vp, and n B |childrenOf(vp)|. Next, we provide some examples.

VP12 : PositioningSystem:Accuracy ¼ minðV53 : GPS:Accuracy;

V54 : Galileo:AccuracyÞ
VP13 : Antenna:AccuracyFactor ¼ maxðV55 : Small:AccuracyFactor;

V56 : Medium:AccuracyFactor;

V57 : Big:AccuracyFactorÞ
VP2 : Activation:Memory ¼ V5 : Switchable:Memory

þ V6 : Continuously:Memory

The equations for the values of global attributes are shown in Table 4. Except for the

TotalAccuracy, the other global attributes are calculated using an aggregate function

in the set of variation points. In the following, we elaborate on their meaning:

– TotalAccuracy: represents the overall accuracy of a given product which is computed by

multiplying the accuracy of the positioning system by the antenna accuracy factor. For

example, a product of the RFW product line that has GPS and a Medium antenna offers an

overall accuracy of 8, since V53:GPS.Accuracy = 8 and V56:Medium.AccuracyFactor = 1.

– TotalMemory: represents the total memory required by a given product, which is

computed by the sum of all attributes Memory related to variation points.

– TotalROM: represents the total ROM required by a given product, which is computed

by the sum of all attributes ROM related to variation points.

– TotalLatency: represents the maximum time that a given product takes to provide

feedback, which corresponds to the minimum value amongst the attributes Latency
related to variation points. For example, the minimum value between VP1.Latency =

350 and VP2.Latency = 500 is 350. Then, the maximum time this product should take

to provide feedback to the user is 350 ms.

– TotalCost: represents the cost of a given product, which is computed by the sum of all

attributes Cost related to variation points.

Table 4 Equations for the values of global attributes

Name Value

TotalAccuracy PositioningSystem.Accuracy * Antenna.AccuracyFactor

TotalMemory Pk

j¼1

vpj:Memory; where vpj:Memory 2 OVMQþ u

TotalROM Pk

j¼1

vpj:ROM; where vpj:ROM 2 OVMQþ u

TotalLatency minðvp1:Latency; . . .; vpk:LatencyÞ; where vp1:Latency; . . .; vpk:Latency 2 OVMQþ u

TotalCost Pk

j¼1

vpj:Cost; where vpj:Cost 2 OVMQþ u

RecognitionTime minðvp1:Cycle; . . .; vpk:CycleÞ; where vp1:Cycle; . . .; vpk:Cycle 2 OVMQþ u

k B number of variation points 2 OVMQþ u

Software Qual J

123

– RecognitionTime: represents the maximum time that a given product takes to recognise

a signal, which corresponds to the minimum value amongst the attributes Cycle
related to variation points. For example, the minimum value between VP1.Cycle = 50

and VP2.Cycle = 100 is 50. Then, the maximum time this product should take to

recognise a signal is 50 ms.

4.2 Domain constraints

Domain constraints are constraints on attributes that limit the possible configuration of

products. These constraints may come from resource limitations (e.g., the maximum

memory consumption allowed) or any domain relevant restriction, e.g., all products

derived from the RFW product line must provide feedback to the user before passing the

signals, otherwise the system is useless. Therefore, domain constraints can be defined on

quality attributes to avoid building unsuitable products.

In the case of the RFW product line, for example, the traffic signs must be detected by

the sensor from a given distance before passing the traffic sign. This distance must be

reasonable to allow the product to provide feedback to the user within an expected time.

Therefore, some constraints on the attribute VP11:Sensor power.range must be

defined. To guarantee that a RFW product can successfully detect the V44:End of
prohibitions sign, the sensor has to have a range of at least 25 m. However, to detect

the V41:No overtaking sign, the sensor must be able to detect the signal at least 50 m

before passing the sign. Thus, the constraints on attributes represented within ellipses in

Fig. 13 are specified to prevent the configuration of unsatisfactory products.

The syntax of domain constraints depends on the solver used to automate the analysis.

Domain constraints are predicates over attributes that can be evaluated to true or false

depending on the attribute values. The neutral values for attributes must also be considered

Fig. 13 An example with constraints on attributes

Software Qual J

123

in constraint definitions. In the RFW product line, we have identified some required

domain constraints. A complete list of these constraints can be found in the appendix,

Fig. 20.

5 Detecting anomalies in OVMQ 1 u by means of CSP

A typical problem that comes to light when specifying OVM is the wrong use of con-

straints. A wrong constraint modelling can cause anomalies in the specification, which are

difficult to detect in practice. In addition to requires and excludes constraints, domain

constraints can also cause anomalies. Therefore, before analysing quality conditions, we

have to detect possible anomalies in the OVMQ ? u. For example, anomalies such as ‘‘the
model does not allow the derivation of any product that respects all the specified depen-
dencies amongst variants’’ should be detected.

The RFW product line has 13 variation points, 4 out of which are optional, and 57

variants. Consequently, there are 57 variability dependencies between variation points and

variants, 65% of them are optional and 35% are alternative. Furthermore, the product line

has 34 requires and 4 excludes relationships between variable elements, 225 attributes (18

out of them are derived), and 72 quality domain constraints. Consequently, in order to

manually detect anomalies in this model is a tedious and error-prone task. This task is even

more complicated if we consider that the products should respect domain constraints.

There are three kinds of anomalies we intend to check in the specification of

OVMQ ? u; namely void model, dead variable element and false optional. These

anomalies were already identified and supported by other approaches when using feature

models (Benavides et al. 2010; Trinidad et al. 2008). In this article, we propagate those

results to the OVM context.

– Void model. A model is void when it is not possible to derive any valid product, i.e., a

product that respects the rules specified in the OVMQ ? u.

– Dead variable element. Using constraints wrongly can generate a dead variable

element, i.e., it never appears in any valid product. Figure 14a shows a false constraint

(a) (b)

Fig. 14 Anomalies in OVM: a Dead element, b False optional element

Software Qual J

123

between variant V12:Display and sound indication and variant

V17:Emergency brake. The V17:Emergency brake behaviour will not be

part of a product regardless of whether V11:Show warning signs or V12:Dis-
play and sound indication is selected. This situation gives a false view of the

product line scope, since that the optional dependency between VP6:Behaviour at
hazardous situation and V17:Emergency brake determines that it should

be possible to configure products with and without V17:Emergency brake. When

the false constraint on this V17:Emergency brake is specified, this functionality

will never appear in a product of the RFW product line, and thus will lead to a dead

variant.

– False optional. Verifies whether a variable element is false optional or not. A variable

element is false optional if it is modelled as optional, yet appears in all valid products.

This anomaly also gives a false view of the product line scope. Figure 14 shows how

the variant V17:Emergency brake can become a false optional.

The purpose of automated analysis of feature models is extracting information from

feature models using automated mechanisms (Batory et al. 2006). Benavides et al. (2010)

define a conceptual framework, in which they propose a process for the automated analysis

of feature models. Based on this framework, we define the process presented in Fig. 15 as

the whole process to automate the analysis of OVMQ ? u. The process starts by mapping

the OVMQ ? u to a CSP, which is the logical representation we use to automate the

analysis (hereinafter, this mapping is referred to as wovm ? u). Afterwards, we define

analysis operations, which observe the properties of the wovm ? u model without modi-

fying it; they take a wovm ? u model and/or a configuration as input and provide a

response. An off-the-shelf CSP solver is used to automatically analyse the input data and

provide the analysis results. CSP solvers search for a valid set of variable values that

simultaneously satisfies all constraints. For example, A ? B [1 is a CSP involving the

integer variables A and B, both with a domain [[1…10]. In this case, the solver would

find (A = 2, B = 2) as a valid solution for the CSP.

5.1 Mapping OVMQ ? u to CSP

The mapping of an OVMQ ? u into CSP can differ depending on the concrete solver that

is used later to solve the problem. In general, the mapping process goes through two main

steps. First, the 3-tuple wovm = (Vovm, Dovm, Covm) is built, where the variable elements in

the OVM become variables in Vovm with their respective domains in Dovm, and the vari-

ability and constraint dependencies in the OVM become constraints in the Covm. Second,

the final mapping from an OVMQ ? u to a CSP is carried out by adding variables and

Fig. 15 Process for the automated analysis of OVMQþ u using CSP

Software Qual J

123

constraints to the wovm, where the quality attributes become variables and the domain

constraints become constraints, resulting in the 3-tuple wovm ? u = (Vovm ? u,

Dovm ? u, Covm ? u). Next, we detail the complete mapping process.

5.2 Building the wovm

Concrete rules for mapping an OVM into a CSP are listed in Table 5. Also, the mapping of

our RFW example of Fig. 13 is presented. In this table, we show the mapping of an OVM

into a general CSP, which is independent of the solver to be used later to analyse the

Table 5 Mapping OVM into constraint satisfaction problem

Software Qual J

123

model. The mapping is very similar to the one used for feature models (Benavides et al.

2005), with the following differences:

1. In the OVM model, there are two types of nodes, namely variation points and variants.

These nodes differ from each other. Variation points are mandatory or optional. In

feature models, all nodes in the diagram are features.

2. There is no constraint for a root node, since there is no root node in the OVM.

3. For each mandatory variation point, we add a constraint assigning value 1 to the

correspondent variable.

4. Each alternative relationship is mapped to a constraint ‘‘if (vp [0) sum (v1, v2, …, vn)

in {m…m0} else v1 = 0 ^ v2 = 0 ^ vn = 0’’, where vp is the variation point, vi |

i [[1… n] the set of optional variants in the relationship and [m… m0] |

0 B m B m0 B n the cardinality. This mapping is similar to cardinality-based feature

models.

5.2.1 Building the wovm ? u

After we have built the wovm, we add the variables corresponding to each attribute in the

OVMQ ? u and the needed constraints, thus resulting in the wovm ? u. The general

mapping rules and the mapping for the RFW example of Fig. 13 are presented in Table 6.

These mappings created following these steps:

1. Each attribute in the OVMQ ? u becomes a variable in wovm ? u. The domain of

these variables are defined by the union of the domain interval specified to the

corresponding attribute and its nullValue. Note that, when an attribute is global, it is

part of all products; therefore, it does not need a neutral value.

2. The values of each attribute in the OVMQ ? u become constraints on a variable in

wovm ? u.

3. The domain constraints in the OVMQ ? u become constraints in wovm ? u.

5.3 Defining operations for detecting anomalies as CSP primitives

The analysis method we propose is characterised by analysis operations that are applied to

an OVMQ ? u. In this section, we define the three analysis operations we need to detect

anomalies in the OVMQ ? u as CSP primitives.

Operation 1 (Void Model) Let ovm ? q be an OVMQ ? u specification, and wovm ? u
its equivalent CSP. Then, ovm ? q is void if there is no solution to wovm ? u.

voidðwovmþuÞ , jsolðwovmþuÞj ¼ 0

where sol(wovm ? u) is the set of solutions of wovm ? u.

Operation 2 (Dead Variable Element) Let ovm ? q be an OVMQ ? u specification and

let wovm ? u be its equivalent CSP of the form (Vovm ? q, Dovm ? q, Covm ? q). The

variable element ve [Vovm ? q is dead if it does not belong to any solution of wovm ? u.

It follows:

isDeadðwovmþu; veÞ , 8s : solðwovmþuÞ � ve 62 s

Software Qual J

123

A variable element is false optional if it is modelled as optional, but it appears in all

valid products. A variable element can be a variant or a variation point. A variation point

vp is false optional if it is optional and is part of all solutions of wovm ? u. A variant v is

false optional when it is part of all solutions of wovm ? u and (1) its parent relationship is

optional or alternative, or (2) its parent is optional. Consider that parent(v) returns the

parent of v, relationship() returns the type of relationship between a variant v and its

parent, and vptype() returns whether the variation point is mandatory or optional. The false

optional operation is defined as follows:

Operation 3 (False Optional (FO)) Let ovm ? q be an OVMQ ? u specification,

wovm ? u be its equivalent CSP of the form (Vovm ? u, Dovm ? u, Covm ? u), and v, vp
[Vovm ? u. Then, vp is false optional if isFalseOpt(wovm ? u, vp) = true and v is false

optional if isFalseOpt(wovm ? u, v) = true. It follows:

isFalseOptðwovmþu; vpÞ , 8s : solðwovmþuÞ � vp 2 s ^ vptypeðvpÞ ¼ optional

isFalseOptðwovmþu; vÞ , 8s : solðwovmþuÞ�

Table 6 Mapping OVMþ u into constraint satisfaction problem

Software Qual J

123

ðv 2 s ^ ðrelationshipðparentðvÞÞ ¼ optional _ alternativeÞÞ _ ðv 2 s ^ ðvptypeðparentðvÞÞ
¼ optionalÞÞ

6 Analysing OVMQ 1 u

Apart from analysis operations to detect anomalies in OVMQ ? u, we propose other

analysis operations. Quality-aware analysis operations allow verifying whether a product

or a set of products in a product line specification fulfil a given quality condition, and at the

same time satisfy functional variability and domain constraints. This analysis aims at

supporting the engineer decisions, but it can be performed by any stakeholder that wants to

obtain information from the product line. Therefore, if an engineer of a product line has at

his/her disposal an OVMQ ? u specification, he/she can make use of quality-aware

analysis.

The analysis process introduced in Fig. 15 is extended in order to consider quality

conditions (see Fig. 16). In this process, an operation has as input a target OVMQ ? u,

may or may not have a partial configuration (a set of variants that must be in the

products and a set of variants that cannot be), and a quality condition. We define a

quality condition as a statement of what is required as part of a product or a set of

products regarding quality attributes. For example, the engineer of the RFW product

line may want to analyse whether it is possible to derive a particular product with

development cost not higher than the assigned budget. The restrictions imposed by the

engineer when expressed as quality conditions can be used to get the answer from the

OVMQ ? u specification. For example, the quality condition defined by the engineer

can be expressed as TotalAccuracy \ 10 ^ TotalCost \ 30. As previously mentioned,

our approach is automated by means of CSP. Therefore, our basic assumption is that

quality conditions can be specified as a constraint on quality attributes, as shown in the

following:

Definition 1 (Quality condition) Let ovm ? q be an OVMQ ? u specification,

wovm ? u be its equivalent CSP of the form (Vovm ? q, Dovm ? q, Covm ? q). A quality

condition q is a constraint on one or more attributes [Vovm ? q.

6.1 Satisfiability

As previously mentioned, the engineer of the RFW product line may want to verify

whether it is possible to configure a product that satisfies a given quality condition. We

propose an analysis operation, namely satisfiability, to verify whether a product or a set of

products in OVMQ ? u fulfil a given quality condition, at the same time that satisfy

Fig. 16 Process for the
automated analysis of OVMþ u
with quality conditions

Software Qual J

123

functional variability and domain constraints. A product line satisfies a quality condition if

there is at least one product that satisfies all constraints defined in both, OVMQ ? u and

quality condition. Let us, for example, consider the quality condition previously defined

TotalAccuracy \ 10 ^ TotalCost \ 30. Then, the product line satisfies this quality con-

dition if there is at least one solution to wovmþu ^ TotalAccuracy\10 ^ TotalCost\30; as

follows:

Satisfiesðwovmþu; TotalAccuracy\10 ^ TotalCost\30Þ ,

jsolðwovmþu ^ TotalAccuracy\10 ^ TotalCost\30Þj[0

Additionally, taking into account the needs of the stakeholders, the engineers can verify

whether some partial configuration (i.e., a set of variants) satisfies the variability expressed

by the OVMQ ? u and a quality condition, as well. Therefore, if necessary, the engineer

can try to achieve the required configuration by relaxing or removing relationships in the

variability model.

A partial configuration is of the form {Se, Re}, where Se is the set of variants to be

selected, and Re is the set of variants to be removed from the configuration, such as V vi

[Se ? vi = 1 and V vi [Re ? vi = 0. For example, the RFW engineer wants to verify

whether it is possible to derive a product by combining the most powerful sensor, the GPS

positioning system, and the medium-class car. Thus, this partial configuration is expressed

by the set {{V53:GPS, V52:High, V1:Medium-class car}{}}. Therefore, the

OVMQ ? u satisfies the engineers quality condition and simultaneously offers the desired

partial configuration if and only if there is at least one solution to wovmþu ^ TotalAccuracy

\10 ^ TotalCost\30 ^ fV53 : GPS; V52 : High; V1 : Medium� classcargfg; as,

shown in the following:

Satisfiesðwovmþu; TotalAccuracy\10 ^ TotalCost\30; ffV53 : GPS;V52 : High;V1

: Medium� classcargfggÞ ,

jsolðwovmþu ^ TotalAccuracy\10 ^ TotalCost\30Þ^

ðffV53 : GPS;V52 : High;V1 : Medium� classcargfggÞj[0

6.2 Optimal product

The optimal product is the product that satisfies OVMQ ? u and also minimises or

maximises a given objective function. When relating quality information to OVM, we are

able to ask for an optimal product, since the objective function takes into account values of

attributes. The product line engineer may want to verify, for example, which product of the

set of products consumes less memory, or even to find the product with the lowest

development cost. Therefore, finding the optimal solution, as opposed to any possible

solution, would be helpful for making quality-aware decisions. Hence, to find the optimal

solution, we can associate an objective function with the CSP. Then, the solver has to find

solutions that maximise or minimise the specified objective function that satisfies all the

constraints. A possible objective function would be O = TotalCost, such that the sought

solution is rendered by minimising O, as follows:

Cheapest product(s) ¼ minðCSPovmþq; TotalCostÞ

Software Qual J

123

6.2.1 Optimal product with quality condition

The engineer of a product line may want to verify which is the optimal product that

satisfies some quality condition and a desired partial configuration. For example, which is

the cheapest product that offers TotalAccuracy \ 10 ^ TotalCost \ 30 and has the variants

V53:GPS, V52:High, and V1:Medium-class car? To find this optimal solution, we

first filter the model by adding a quality condition (U) and a partial configuration (PC),

which were introduced in Sect. 1. Afterwards, we define the objective function. In this

case, the objective function is the global attribute TotalCost, which has been defined as

follows (see Table 4 for a complete definition):

Xk

j¼1

vpj:Cost

Finally, we define that the optimal products (Popt) minimise the TotalCost, as shown in

the following:

U ¼ TotalAccuracy\10 ^ TotalCost\30

PC ¼ ffV53 : GPS;V52 : High;V1 : Medium� classcargfgg
filter ¼ CSPovmþq ^ U ^ PC

O ¼ TotalCost

Popt ¼ minðfilter;OÞ

6.2.2 Most representative product

The optimisation operation can be used to find the most representative product(s) of a

product line, which could be used to support evaluation strategies. Assessing all possible

products of the product line is impracticable due to the usually very large number of

products in a product line. Therefore, strategies to decide which products should be

checked are needed.

There may be different ways of implementing the Most Representative Products (MRP)
operation. In this article, we consider the MRP those that have variants involved in a larger

number of products; however, there are other possibilities (e.g., the most expensive ones or

those that have the largest number of variants). Therefore, the MRP operation is defined as

the product(s) of the software product line that maximise(s) the commonality degree. The

commonality degree of a product is determined by the sum of the commonality of its

variants and variation points. This commonality represents the percentage of products

where the variable element appears, e.g., if there are 10 possible products and a variant v
appears in 5 products, the commonality of v is 50%. After the most representative product

has been found, any evaluation technique employed in single systems can be applied to

evaluate its quality. This operation is defined as follows:

Operation 4 (Most Representative Products (MRP)) Let ovm ? q be an OVMQ ? u
specification and v [Vovm ? u. Commonality Degree of v is the percentage of products

(solutions) in which v is included. O is the summation of commonality degree of variants,

and MRP is the product(s) that maximise(s) O.

Software Qual J

123

CommonalityDegree(v) ¼
jsolðwovmþq ^ vÞj
jsolðwovmþqÞj

O ¼
Xk

i¼1

CommonalityDegreeðviÞ;where k ¼ jVovmþqj

MRPðwovmþuÞ ¼ maxðwovmþu;OÞ

Note that, the MRP operation is defined based on an optimisation function represented

by O. This function can be defined according to the user needs and is quality-aware. For

example, O could be defined as the sum of the attributes Cost and therefore MRP would

return the most expensive product(s).

7 Implementing the approach

7.1 FaMa-OVM

We have developed FaMa-OVM, which is a prototype tool to implement our approach.

FaMa-OVM receives as input an OVMQþ u specification and provides support to quality-

aware analysis process. It allows detecting anomalies in an OVMQþ u specification, as

well as verifying quality conditions, optimal products and the most representative prod-

uct(s). The tool was implemented based on FaMa-Framework (FaMa-FW) (Trinidad et al.

2008), which is an open source Java framework designed to facilitate the development of

analysis tools for diverse variability modelling languages. FaMa-FW provides a number of

extension points to plug in new components, such as metamodels, readers/writers and

reasoners. Figure 17 shows an overview of FaMa-OVM components. The dark compo-

nents are the extensions of the original framework. In the following, we report on those

components we have implemented:

The OVMQþ u metamodel implements the description of the different variable ele-

ments, and the rules that constraint the combination of these elements. Furthermore, it

describes the attributes and their relationship with variable elements, as well as the con-

straints on attributes.

The OVMQþ u reader implements a reader to an OVMQþ u textual format, which

we have defined for representing an OVMQþ u specification. Figure 18 shows a single

textual format for the examples in Figs. 12 and 13. This textual format consists of four

main parts, namely: Relationships, Attributes, Global Attributes and Constraints. Rela-
tionships specifies the variability dependencies between variation points and variants.

Attributes specifies basic and derived attributes. Global Attributes specifies global attri-

butes. Constraints specifies excludes and requires relationships, and quality conditions.

Attributes are defined as follows:

\name [: \domain [;\value [;\nullValue [;

The terms are separated by commas, and lines are finished with semicolon. When the

value of an attribute is a function, a semicolon after \value [is used.

The OVM?Q reasoner implements the solver by using Choco (Laburthe et al. accessed

November 2010). A CSP solver was used because it offers the possibility to work with

Software Qual J

123

numerical values, such as integer, which allows dealing with attributes, enabling it to

maximise or minimise values.

As we have used Choco solver, all variables in the CSP must belong to a finite domain,

which implies that attributes must have a finite domain. Due to this limitation, functions

can only involve integer values. Consequently, we were unable to use real numbers as we

intended. Subsequently, real numbers were mapped to integers. The values of the attributes

V55Small.AccuracyFactor, V56Medium.AccuracyFactor, V57Big.Ac-
curacyFactor were mapped from [1.5,1,0.25] to [4,3,1], respectively.

7.2 Analysis results

In this section, we present the analysis results we have obtained with FaMa-OVM. Our tool

provides support to quality-aware analysis of OVMQþ u. It is worth mentioning that we

have no intention of providing an industrial tool support for such quality-aware analysis

but offer a proof of concepts of our approach.

The analysis of variability models with attributes is a complex problem. When speci-

fying quality attributes, we have defined a certain domain for them. The domain sets the

limits of the attribute values. We address the analysis problem as a CSP, then the higher the

range of the domain is, the more complex the problem becomes. In our implementation,

when mapping the RFW example to a CSP, we have replaced the domain range of attri-

butes as much as possible in order to reduce the problem complexity. For example, in the

case of V11:Show warning sign.Latency, we have replaced the range Inte-
ger[200…800] by [400], and in the case of VP4Behavior at warning sign-
s.Latency, we have replaced Integer[200…800] by [350,400,500]. An effort was made

to preserve consistency amongst the assigned values.

Fig. 17 FaMa-OVM, an extension of FaMa-FW

Software Qual J

123

We have employed FaMa-OVM to execute all the operations defined in this article. We

have analysed two models: (1) the RFW model, which represents the RFW product line

with all attributes and domain constraints that were defined through this article, and (2) the

Excerpt of RFW model, which is depicted in Fig. 8. The textual OVM for the RFW model

can be found in the complementary material provided at the end of this article.

We were able to find solutions for five operations when applied to both models, as can

be seen in Table 7. We have verified that none of the models is void, but other anomalies

were detected. The excerpt model does not have any anomaly; however, the RFW model

has seven dead elements and six false optional. These anomalies were caused by the wrong

use of constraints by the product line engineer. We were able to determine that the

constraints that involves TotalAccuracy B 10 are causing some of the dead elements as

well as the false optional.

Furthermore, we were able to verify that the RFW product line does not satisfy the

quality condition TotalAcurancy \ 10 ^ TotalCost \ 30. When we have relaxed this

quality condition, by changing values to TotalAccuracy \ 30 ^ TotalCost \ = 50, we

have found that there are products which satisfy the relaxed quality condition. As can be

seen in Table 7, we have also analysed the excerpt model and seen that it satisfies another

quality condition, namely TotalAcurancy \ 10. The number of products found in the

Fig. 18 FaMa-OVM textual format

Software Qual J

123

excerpt model when no quality conditions were defined is 70, but when analysing it using

the quality condition TotalAcurancy \ 10, this number was reduced to 30.

In addition, we have analysed whether the RFW product line satisfies the quality

condition TotalAcurancy \ 10 ^ TotalCost \ 30 associated with the partial configuration

{{V53GPS, V52High, V1Medium - ClassCar}, {}}. As shown in Table 7, we have found

that there are no products that have V53GPS, V52High and V1Medium-ClassCar and

satisfy such quality condition. In the case of the excerpt model, we have verified that there

are products that have V53GPS and V52High and satisfy the quality condition TotalA-
curancy \ 10. When we have associated the partial configuration with the quality con-

dition and verified satisfiability, the number of products found in the excerpt model was

reduced to 10.

There are operations that need to compute all possible solutions beforehand to be able to

find a solution, such as the optimal product and the MRP. Therefore, the problem to be

solved is more complex. We have observed that for the RFW model, these two operations

have taken much more time. The Choco solver was not able to find the most representative

and the optimal products in a reasonable time; however, it found a solution to these two

operations when analysing the excerpt model. In this model, we were able to find the most

accurate products. For this purpose, we have defined that the optimal products minimise

the TotalAccuracy global attribute. Thus, we have found that 20 products are able to

provide the minimum accuracy, which is 4. In the following, we present the 20 most

accurate products.

Table 7 Results for some of the analysis operations

RFW model�± Excerpt of RFW�;

Detect anomalies Void False False

Dead V38Bend None

V39Traffic queues

V45Yield

V50Low

V51Medium

V55Small

V56Medium

False optional VP7Other signs None

VP8Prohibition signs

VP9Warning signs

VP10Signs given orders

V41No overtaking

V57Big

Satisfiability Satisfies(QC) False True

Satisfies(QC?PC) False True

� QC ¼ TotalAccuracy\10 ^ TotalCosts\30
� QC ¼ TotalAccuracy\10
± PC = {{V53:GPS, V52:High, V1:Medium - ClassCar}, {}}
; PC = {{V53:GPS, V52:High, {}}

Software Qual J

123

Optimal product 1 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V52High}

Optimal product 2 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V52High,VP10SignsGivingOrders}

Optimal product 3 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V52High,VP10SignsGivingOrders,
V44EndOfProhibitions}

Optimal product 4 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V52High,VP10SignsGivingOrders,
V41NoOvertaking}

Optimal product 5 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V52High,VP10SignsGivingOrders,
V41NoOvertaking,V44EndOfProhibitions}

Optimal product 6 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V51Medium}

Optimal product 7 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V51Medium,VP10SignsGivingOrders}

Optimal product 8 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V51Medium,VP10SignsGivingOrders,
V44EndOfProhibitions}

Optimal product 9 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V50Low}

Optimal product 10 = {VP12PositioningSystem,V54Galileo,
VP13Antenna,V57Big, VP11SensorPower,
V50Low,VP10SignsGivingOrders}

Optimal product 11 = {VP12PositioningSystem,V53GPS,V54Galileo,
VP13Antenna, V57Big,VP11SensorPower,
V52High}

Optimal product 12 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna, V57Big,
VP11SensorPower,V52High,
VP10SignsGivingOrders}

Optimal product 13 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna, V57Big,
VP11SensorPower,V52High,
VP10SignsGivingOrders,
V44EndOfProhibitions}

Optimal product 14 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna,

Software Qual J

123

V57Big,VP11SensorPower,V52High,
VP10SignsGivingOrders, V41NoOvertaking}

Optimal product 15 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna, V57Big,
VP11SensorPower,V52High,
VP10SignsGivingOrders,
V41NoOvertaking,V44EndOfProhibitions}

Optimal product 16 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna,
V57Big,VP11SensorPower,V51Medium}

Optimal product 17 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna,
V57Big,VP11SensorPower,
V51Medium,VP10SignsGivingOrders}

Optimal product 18 = {VP12PositioningSystem, V53GPS,
V54Galileo,VP13Antenna, V57Big,
VP11SensorPower,V51Medium,
VP10SignsGivingOrders,
V44EndOfProhibitions}

Optimal product 19 = {VP12PositioningSystem,
V53GPS,V54Galileo,VP13Antenna,
V57Big,VP11SensorPower,V50Low}

Optimal product 20 = {VP12PositioningSystem,
V53GPS,V54Galileo,VP13Antenna,
V57Big,VP11SensorPower,
V50Low,VP10SignsGivingOrders}

Furthermore, we have analysed the excerpt model by executing the optimal operation

associated with the quality condition TotalAcurancy \ 10 and the partial configuration

{{V53GPS, V52High}, {}}, and still using TotalAccuracy as the objective function. In this

case, five products were found as the most accurate products, namely:

Optimal product 1 = {VP12PositioningSystem,
V53GPS,V54Galileo,VP13Antenna,
V57Big, VP11SensorPower,V52High}

Optimal product 2 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna,
V57Big, VP11SensorPower,V52High,
VP10SignsGivingOrders}

Optimal product 3 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna,
V57Big, VP11SensorPower, V52High,
VP10SignsGivingOrders,
V44EndOfProhibitions}

Optimal product 4 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna,V57Big,
VP11SensorPower,

Software Qual J

123

V52High,VP10SignsGivingOrders,
V41NoOvertaking}

Optimal product 5 = {VP12PositioningSystem,V53GPS,
V54Galileo,VP13Antenna,V57Big,
VP11SensorPower,V52High,
VP10SignsGivingOrders,V41NoOvertaking,
V44EndOfProhibitions}

In addition, we present the two most representative products we have obtained with our

tool.

Most representative product 1 ¼ fVP12PositioningSystem; V53GPS; V54Galileo;
VP13Antenna; V56Medium; VP11SensorPower;

V52High; VP10SignsGivingOrders;

V41NoOvertaking; V44EndOfProhibitionsg
Most representative product 2 ¼ fVP12PositioningSystem; V53GPS; V54Galileo;

VP13Antenna; V57Big; VP11SensorPower;

V52High; VP10SignsGivingOrders;

V41NoOvertaking; V44EndOfProhibitionsg

We ran the experiments on a computer that is equipped with a Dual core AMD Opteron

1218 processor running at 2.6 GHz, 2 GB of RAM, Ubuntu 10.10 with Kernel 2.6.35.28,

and the 1.6.0 version of the Java Runtime Environment.

8 Related work

A number of research efforts have been made to capture quality attributes and their

relationship with functional features (Montagud and Abrahão 2009). The addition of

quality information to variability models has mostly been proposed for feature model

approaches; however, in the context of OVM, it has not been explored in the literature

before. The relationship between feature models and some additional information was

already suggested by (Kang et al. 1990) in the seminal feature model proposal called

FODA. In this work, the authors contemplate the addition of feature attributes with

quantified values. They also introduce the need to define relationships between features

and attributes. Later (Kang et al. 1998), make an explicit reference to non-functional

features, which they define as a kind of feature that characterises functional features.

Other authors have also proposed the extension of feature models with so-called feature

attributes (Batory 2005; Batory et al. 2006; Benavides et al. 2005; Czarnecki et al.

2005). Feature models and OVMs differ in the way they relate to quality information.

Feature models can be directly annotated with features, whereas in OVM, the quality

information must be in a separate model. As OVM documents variability realised in the

base models and this variability is orthogonal to all base models, it cannot be annotated

with attributes.

There are several proposals providing automated analysis of basic or cardinality-based

feature models (Benavides et al. 2010). Several analysis operations on feature models and

also automated support for them were proposed. These approaches can be classified into

Software Qual J

123

four different groups, according to the logic paradigm or method used to provide auto-

mated support: propositional logic, constraint programming, description logic and ad hoc

algorithms. Most of the approaches that deal with quality information propose the use of

constraint programming for automating, since it allows dealing with integer variables.

However, feature models extended with attributes, where numerical values are included,

have not received much attention (Benavides et al. 2010).

Benavides et al. (2005) propose extended feature models and the automated analysis

of such models by using CSP. Although in this approach the authors provide a way to

add attributes to features, they do not provide much detail about the values of the

attributes, as acknowledged in Benavides et al. (2010). In this work, they only present a

simple and high-level example where they illustrate a possible mapping from feature

attributes to CSP. The values of the attributes are ranges, and the only function used to

calculate derived attributes is the addition. There is no global attribute and relationships

between attributes are hierarchically organised in the feature tree; in other words, the

relationship between attributes exists only between a parent and a child, and they do not

provide support to constraint on attributes. In addition, the authors propose a number of

analysis operations on the extended feature model; however, they do not provide quality-

aware analysis.

Karataş et al. (2010) propose a quality language to express extended feature model.

They address feature-attribute and attribute-attribute constraints. In addition, they pro-

vide a mapping from an extended feature model to a CSP. We were inspired by their

ideas to define a quality information language. It is to note that it would be easy to

introduce their results in our proposal. Although they offer a detailed quality language,

they neither cover derived and nor global attributes. In addition, functions as values for

the attributes are not allowed. Furthermore, the proposed mapping is different from

ours. In their proposal, they also do not have null values for the attributes, so, to map

each constraint into a CSP, they need to add a constraint indicating that the features

involved in the constraint must be selected. In other words, in their approach, the value

of an attribute is relevant to a constraint only if the feature it belongs to is included in

the product.

White et al. (2009) present a method called Filtered Cartesian Flattening to solve the

problem of optimally selecting a set of features that simultaneously satisfy a number of

resource constraints. They apply several existing algorithms to this problem, which per-

form much faster and offer an approximate solution. We consider this work comple-

mentary to ours, and their research results could be applied to our problem of finding an

optimal product.

Other authors Tun et al. (2009), Bagheri et al. (2010) have looked at more qualitative

means of evaluating quality constraints based on goal-oriented analysis. In (Tun et al.

2009), the authors separate feature descriptions into feature models relating to the

requirements, the problem world context, and the specifications. Once requirements are

selected for a desired product, one or more products that satisfy the requirements and the

quantitative quality constraints are generated. This article resembles our research regarding

the analysis of quality information in variability models. They use quality attributes and

quality constraints to express technically known properties of the system. However, both

approaches differ with regard to the way, quality attributes are defined. In contrast to our

approach, they define the value of derived attributes as a hierarchical function, which

means that the value of the attribute of a parent feature is calculated as a function of the

child feature’s values. This hierarchy limits the relationship between attributes. In addition,

they provide a way to configure, from a feature model, solutions that satisfy quality

Software Qual J

123

requirements as well as quality constraints. In our work, on the other hand, we propose a

number of quality-aware analysis operations to analyse OVM. Bagheri et al. (2010) take

into consideration the stakeholders’ desired quality attributes (called soft constraints)

during a feature model configuration, and use a fuzzy propositional language for the

analysis. They provide an interactive feature model configuration process, where they

annotate features with high-level abstract objectives. By using fuzzy form, they express

how features contribute to satisfy these objectives. This work focuses on related feature

models with strategic objective of the stakeholders to find the solution that best fits

stakeholders’ desire.

There is also research that is based on other variability model techniques. Sinnema

et al. (2004) propose COVAMOF, which is a variability modelling framework for

modelling variabilities and constraints on quality properties. In COVAMOF quality

attributes are expressed as dependencies related to variation points. These dependencies

have, amongst other things, a function that determines their values, depending on the

selected variants, and a constraint on these values. The value of the dependencies can

represent formal or informal knowledge. The former is represented using algebraic

expressions, and the latter can contain or refer to documented knowledge (e.g., HTML

documents). Dhungana et al. (2010) propose the decision-oriented variability modelling

language DOPLERVML as part of the DOPLER tool suite (Dhungana et al. 2007). In

this language, the decisions represent the variation points in a variability model and the

assets describe the reusable artefacts and their dependencies. In contrast with our pro-

posal, in COVAMOF attributes are only related to variation points, but not with variants,

thus direct impact from one variant to another cannot be specified. In DOPLERVML

attributes are related to assets and not to the variability model, besides constraints on

attributes are not considered by the authors. Furthermore, both proposals do not provide

automated analysis.

To the best of our knowledge, only Metzger et al. (2007) have partially explored the

automated analysis of OVM. As part of their work, they propose an indirect way to

automatically analyse OVMs. First, they transform an OVM into a Varied Feature Diagram

(VFD?), which is a formal ‘‘back-end’’ language used to define semantics and automating

analysis, and in doing so, they reuse the semantics of analysis operations on VFD?. To

carry out this transformation, they provide an ad–hoc algorithm. Second, they map the

VFD? to a propositional formula and then automatically analyse the OVM by means of the

solver SAT4j (Berre and Parrain accessed November 2010). In contrast to our proposal,

they do not address quality information.

9 Discussions and conclusions

In this article, we have presented an approach for quality-aware analysis in software

product lines using OVM to represent variability. To provide a method for quality-aware

analysis, we follow three steps. First, we have presented a way to associate quality

information with OVM (referred to as OVMQþ u). Second, we have proposed a number

of analysis operations to verify OVMQþ u. Third, we have presented a mapping from

OVMQþ u to a constraint satisfaction problem and use Choco, an off-the-shelf constraint

programming solver, to automatically perform the analysis tasks. To illustrate the feasi-

bility of our approach, we have used a product line example from the automotive domain,

which was created in a national project by a leading car company. Besides, we have

introduced FaMa-OVM, which is a prototypical tool developed as a proof of concepts of

Software Qual J

123

our approach. We were able to identify void models, dead and false optional elements, and

check whether the product line example satisfies quality conditions. With FaMa-OVM

results, we have determined that the addition of quality information to the analysis process

highly increases the complexity of the problem when trying to find an optimal solution or

the most representative product, as we have discussed in Sect. 2. We believe that it is

important to work in collaboration with other research areas (e.g., Constraint Program-

ming, Artificial Intelligence), in order to find other techniques that could better solve this

problem.

In our approach we consider 1:1 relationships between OVM and configuration model

elements. However, these relationships could be extended to be of 1:N with only minor

changes. These changes concern the mapping from OVMQþ u to a CSP. In 1:1 rela-

tionships, we can omit the configuration model in the mapping process and then each

relationship between an OVM element and a quality attribute becomes a variant in the

CSP. If 1:N is allowed, the configuration model cannot be omitted. Consequently, the

mapping is changed and each relationship involving an OVM element, a configuration

model element, and a quality attribute become a variable in the CSP. For the sake of

simplicity we have not addressed 1:N relationships, although our approach is theoretically

applicable.

In our approach, a quality attribute can be composed of values of other attributes,

such as TotalCost and TotalMemory. However, the compositionality of certain attri-

butes, such as security, usability, and performance is not obvious and often hard to

define. In our approach, we deal with attributes that are technically known and that can

be composed of means of functions on individual values. In addition, in our proposal,

an attribute can be involved in many functions, yet these functions must allow a

common neutral value. For example, if the neutral value of GPS.Cost is zero, then it

cannot be involved simultaneously in an addition and a multiplication operation.

Therefore, a limitation of our approach is that the same attribute can only be involved

in multiple functions when it is possible to find a common neutral value for these

functions.

There may be some cases in which the engineer wants to postpone the decision about

the value to be assigned to an attribute, for example, the attribute Cost of a given func-

tionality. In these cases, it would be helpful if a range and not a specific value could be

specified for the value of the attributes related to variants. The use of ranges would slightly

vary our approach, since we limit attribute values to concrete values or functions, however

it would be possible to extend our proposal to support it. In fact, in our tool, ranges can be

specified. One of the consequences of adding ranges as values for attributes is that the

number of products could be increased and not reduced, as we have mentioned in Sect. 1.

For example, it would be possible to have different products with the same functionalities

but different levels for attributes. In our approach, the products differ only by

functionalities.

Regarding our tool, we emphasise that it is based on a framework for the analysis of

feature models, which is a research area that has been explored. We noted that this

framework simplified the development, since we did not have to start from scratch. We

have used a CSP solver to implement the analysis, Choco, to be precise. In a CSP, all

variables belong to a finite domain, which implies that attributes must have a domain.

Due to limitations in Choco, functions can only involve integer values. Consequently,

we could not use real numbers as we intended, and real numbers were mapped to

integers.

Software Qual J

123

In this article, we have proposed a technique to support quality-aware analysis in SPLE

with OVM. In this analysis, there can be different users of the different operations with

different quality conditions. Therefore, the association between quality conditions and

stakeholders would be determined by the user of the operation. For instance, minimising

the development cost is important to the product provider, whereas accuracy of positioning

system is far more interesting to the product customer.

In our experience, we have observed that although feature models and OVM are similar,

both the specification of quality information in OVM and the implementation of our tool

were not straightforward. This is due to their differences in structure and the way they

relate to quality information. Furthermore, the addition of quality information to the

analysis process highly increases the complexity of the problem.

The CSP solver we have used is not well prepared to solve such a complex problem as

the quality-aware analysis. Our proposal provides a way to theoretically solve this prob-

lem, however when implementing FaMa-OVM to provide automated support for our

approach, it was demonstrated that this problem cannot be solved within a reasonable time.

Thus, we consider that it is important to investigate the nature of problems of the auto-

mated analysis of variability models associated with attributes.

Currently the FaMa-OVM textual format is created manually. To facilitate this task, we

are implementing a textual editor using the Xtext framework (Foundation accessed April

(2011). In addition, we are working on the integration of FaMa-OVM with an OVM editor

in order to offer a visual editor from where it is possible to execute quality-aware analysis.

The visual OVM editor is included in the REMiDEMM (Requirements Engineering and

Management in Domain Engineering with Multi-Model Interaction) case tool, which was

presented in (Heuer et al. 2010).

10 Complementary material

The FaMa-OVM tool and the RFW textual format used in our evaluation are available at

http://www.lsi.us.es/*dbc/material/SofQualJ11.

Acknowledgments We would like to thank Silvia Abrahão and Isidro Ramos for their helpful comments
in earlier versions of this article. We also would like to thank José Galindo for his work on implementing
FaMa-OVM tool. This work has been partially supported by the European Commission (FEDER) and
Spanish Government under CICYT project SETI (TIN2009-07366), by the Andalusian Government under
ISABEL (TIC-2533) and THEOS (TIC-5906) projects, by Evangelischer Entwicklungsdienst e.V. (EED)
and by the DFG under grant PO 607/2-1 IST-SPL.

Appendix

See Figs. 19, 20 and Table 8.

Software Qual J

123

http://www.lsi.us.es/~dbc/material/SofQualJ11

Fig. 19 RFW orthogonal variability model without excludes and requires dependencies

Software Qual J

123

Fig. 20 RFW domain constraints

Software Qual J

123

Table 8 RFW excludes and requires dependencies

Variation
Point

Variant Type Variation point Variant

VP1:Type of
vehicle

Requires VP9:Warning
signs

VP1:Type of
vehicle

Requires VP10:Signs
giving orders

VP1:Type of
vehicle

Requires VP8:Prohibition
signs

VP1:Type of
vehicle

Requires VP7:Other signs

V10:Hazardous
situation alarm

Requires V16:Display and sound
indication

V15:Show on display Excludes V10:Hazardous situation alarm

V9:Sound at warning
signs

Requires V12:Display and sound
indication

V9:Sound at warning
signs

Requires V34:Danger

V11:Show warning
sign

Excludes V9:Sound at warning signs

V8:Overspeed
warning

Requires V48:Maximum speed of x km/h
end

V8:Overspeed
warning

Requires V19:City limit

V8:Overspeed
warning

Requires V21:Home zone entry

V7:No stopping
warning

Requires V33:No stopping

V7:No stopping
warning

Requires V13:Warn for no stopping sign

V7:No stopping
warning

Excludes V14:No warning

V1:Medium-class car Requires V26:No vehicles

V1:Medium-class car Requires V27:No cars

V1:Medium-class car Requires V31:Do not enter

V1:Medium-class car Requires V41:No overtaking

V1:Medium-class car Requires V5:Switchable

V2:Upper-class car Requires V26:No vehicles

V2:Upper-class car Requires V27:No cars

V2:Upper-class car Requires V31:Do not enter

V2:Upper-class car Requires V41:No overtaking

V2:Upper-class car Requires V6:Durable

V2:Upper-class car Requires V8:Overspeed warning

V3:Small truck (3,5t) Requires V26:No vehicles

V3:Small truck (3,5t) Requires V27:No cars

V3:Small truck (3,5t) Requires V31:Do not enter

V3:Small truck (3,5t) Requires V41:No overtaking

V3:Small truck (3,5t) Requires V5:Switchable

Software Qual J

123

References

Bagheri, E., Di Noia, T., Ragone, A., & Gasevic, D. (2010). Configuring software product line feature
models based on stakeholders’ soft and hard requirements. In Proceedings of the 14th international
conference on Software product lines, SPLC’10 (pp. 16–31). Springer, Berlin.

Batory, D. (2005). Feature models, grammars, and propositional formulas. In 9th international software
product line conference (Vol. 3714, pp. 7–20). Springer, LNCS.

Batory, D., Benavides, D., & Ruiz-Cortés, A. (2006). Automated analysis of feature models: Challenges
ahead. Communications of the ACM, 49(12), 45–47.

Benavides, D., Trinidad, P., & Ruiz-Cortés, A. (2005). Automated reasoning on feature models. In 17th
international conference advanced information systems engineering (Vol. 3520, pp. 491–503).
Springer, LNCS

Benavides, D., Segura, S., & Ruiz-Cortés, A. (2010). Automated analysis of feature models 20 years later: A
literature review. Information Systems, 35(6), 615–636.

Berre, D. L., Parrain, A. (2010). Sat4j solver. http://www.sat4j.or.
Chen, L., Babar, M. A., & Ali, N. (2009). Variability management in software product lines: A systematic

review. In 13th international software product line conference (pp. 81–90). Pittsburgh, PA: Carnegie
Mellon University.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and Practice, 10(1), 7–29.

Dhungana, D., Rabiser, R., Grünbacher, P., & Neumayer, T. (2007). Integrated tool support for software
product line engineering. In 22nd IEEE/ACM international conference on automated Software Engi-
neering (pp. 533–534). New York, NY: ACM.

Dhungana, D., Heymans, P., & Rabiser, R. (2010). A formal semantics for decision-oriented variability
modeling with dopler. In Fourth international workshop on variability modelling of software–intensive
systems (pp. 29–35).

Felfernig, A., Friedrich, G. E., & Jannach, D. (2000). UML as domain specific language for the construction
of knowledge-based configuration systems. International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), 10(4), 449–469.

Finkel, R., & O’Sullivan, B. (2011). Reasoning about conditional constraint specification problems and
feature models. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 25(Special
Issue 02), 163–174.

Foundation, E. (2011). Xtext—language development framework. http://www.eclipse.org/Xtex
Garcia, F., Bertoa, M., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M., et al. (2006). Towards a consistent

terminology for software measurement. Information and Software Technology 48(8), 631–644.
Heuer, A., Lauenroth, K., Müller, M., & Scheele, J. N. (2010). Towards effective visual modeling of

complex software product lines. In Proceedings of the 3rd international workshop on visualisation in
software product line engineering (VISPLE) in proceedings of the 14th international software product
line conference (Vol. 2, pp. 229–237).

Table 8 continued

Variation
Point

Variant Type Variation point Variant

V4:Big truck (7,5t) Requires V29:No vehicles w/ weight [
3,5t

V4:Big truck (7,5t) Requires V30:No vehicles over max gross
weight g [x

V4:Big truck (7,5t) Requires V43:No overtaking vehicles [
3,5t

V4:Big truck (7,5t) Requires V41:No overtaking

V4:Big truck (7,5t) Requires V6:Durable

V17:Emergency
brake

Requires V10:Hazardous situation alarm

V53:GPS Excludes V55:Small

Software Qual J

123

http://www.sat4j.or
http://www.eclipse.org/Xtex

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, S. (1990). Feature–Oriented Domain Analysis
(FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M. (1998). FORM: A feature–oriented reuse method
with domain–specific reference architectures. Annals of Software Engineering 5(1), 143–168.

Karataş, A., Oğuztüzün, H., & Doğru, A. (2010). Mapping extended feature models to constraint logic
programming over finite domains. In J. Bosch, J. Lee (Eds.), Software product lines: Going beyond,
LNCS (Vol. 6287, pp. 286–299). Berlin/Heidelberg: Springer.

Laburthe, F., Jussien, N., Rochart, G., Cambazard, H., Prud’homme, C., Malapert, A., et al. (2010). Choco
solver. http://www.choco.emn.f.

Metzger, A., & Pohl, K. (2007). Variability management in software product line engineering. In 29th
international conference on software engineering (ICSE companion) (pp. 186–187). IEEE Computer
Society.

Metzger, A., Pohl, K., Heymans, P., Schobbens, P., & Saval, G. (2007). Disambiguating the documentation
of variability in software product lines: A separation of concerns, formalization and automated anal-
ysis. In 15th international requirements engineering conference (pp. 243–253).

Montagud, S., & Abrahão, S. (2009). Gathering current knowledge about quality evaluation in software
product lines. In SPLC ’09: Proceedings of the 13th international software product line conference
(pp. 91–100). Pittsburgh, PA: Carnegie Mellon University.

Pohl, K., Böckle, G., & van der Linden, F. J. (2005). Software product line engineering: Foundations,
principles and techniques. Berlin, Heidelberg, New York: Springer.

Sinnema, M., & Deelstra, S. (2007). Classifying variability modeling techniques. Information & Software
Technology, 49(7), 717–739.

Sinnema, M., Deelstra, S., Nijhuis, J., & Bosch, J. (2004). COVAMOF: A framework for modeling vari-
ability in software product families. In Third software product line conference (Vol. 3154,
pp. 197–213). Springer, LNCS.

Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., & Toro, M. (2008). Automated error analysis for the
agilization of feature modeling. Journal of Systems and Software, 81(6), 883–896.

Trinidad, P., Benavides, D., Ruiz-Cortés, A., Segura, S., & Jimenez, A. (2008). Fama framework. In 12th
international software product line conference—tool demonstrations (pp. 359–359). IEEE Computer
Society.

Tsang, E. (1993). Foundations of constraint satisfaction. London and San Diego: Academic Press.
Tun, T. T., Boucher, Q., Classen, A., Hubaux, A., & Heymans, P. (2009). Relating requirements and feature

configurations: A systematic approach. In Software product lines, 13th international conference, SPLC
2009, ACM international conference proceeding series (Vol. 446, pp. 201–210).

White, J., Dougherty, B., & Schmidt, D. C . (2009). Selecting highly optimal architectural feature sets with
filtered cartesian flattening. Journal of Systems and Software, 82(8), 1268–1284.

Author Biographies

Fabricia Roos is a researcher and Ph.D. student at the University of
Seville. She received her M.Sc. in computer science from the Uni-
versity of Santa Catarina (UFSC), Brazil. Her current research interests
include variability modelling, and automated analysis and quality
assurance of software product lines.

Software Qual J

123

http://www.choco.emn.f

David Benavides is an associate professor at the University of Seville.
David received his Ph.D. in computer science from the University of
Seville. His current research interests include software product lines,
feature models and automated analysis of software product lines.

Antonio Ruiz Cortés is an associate professor at the University of
Seville. Antonio received his Ph.D. in computer science from the
University of Seville. His current research interests include software
product lines, service oriented computation and software engineering
and methodologies.

André Heuer is a research assistant and Ph.D. student at the Uni-
versity of Duisburg-Essen. He received his M.Sc. in computer science
from the University of Duisburg-Essen. His current research interests
include variability modelling and quality assurance of software product
lines.

Software Qual J

123

Kim Lauenroth is a postdoctoral researcher at the University of
Duisburg-Essen. Kim received his Ph.D. in computer science from the
University of Duisburg-Essen. His current research interests include
variability modelling and formal specification and verification of
software product lines.

Software Qual J

123

	Quality-aware analysis in product line engineering with the orthogonal variability model
	Abstract
	Introduction
	Background
	Feature models
	Extended feature models
	Orthogonal variability model

	Radio frequency warner system: motivating example
	System components
	RFW product line

	Expressing quality information
	Quality attributes
	Domain constraints

	Detecting anomalies in OVMQ + varphi by means of CSP
	Mapping OVMQ + varphi to CSP
	Building the psi ovm
	Building the psi ovm + varphi

	Defining operations for detecting anomalies as CSP primitives

	Analysing OVMQ + varphi
	Satisfiability
	Optimal product
	Optimal product with quality condition
	Most representative product

	Implementing the approach
	FaMa-OVM
	Analysis results

	Related work
	Discussions and conclusions
	Complementary material
	Acknowledgments
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

