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Abstract

Researchers and practitioners have been developing a
wide range of techniques and tools to model and man-
age variability as a response to the heterogeneity of
application areas and the diversity of implementation
practices in different domains. In our own research
we have been developing a tool-supported approach to
decision-oriented variability modelling, which is highly
customizable to domain-specific needs. In the past we
have reported on our experiences on using the approach
and its benefits in diverse industrial contexts. In this
paper we present a more formal description of our ap-
proach and define the execution semantics of decision-
oriented variability models.

1. Introduction

Variability is an emergent property of software sys-
tems and results from different design decisions taken to
address requirements and contexts from different users.
Experience from large-scale long-living systems shows
that knowledge about variability is mostly tacit in nature
and manifests itself in many different kinds of artefacts
(documents, software components, test cases, configu-
ration parameters, etc.) and different mechanisms sup-
ported by programming languages, architectural styles,
design patterns, etc. Variability models have been pro-
posed as a means of communication to deal with ex-
plicit documentation of tacit knowledge and better uti-
lization of the flexibility and adaptability provided by a
system.

The importance of variability in software systems
and the necessity of making knowledge about vari-
ability explicit in models have already been identi-
fied as important research areas in software engineer-
ing. Depending on the background of different re-
searchers, the needs of different industrial contexts and

the kinds of systems under investigation, several vari-
ability modelling tools and techniques are already avail-
able [1, 5, 14, 15, 18, 19]. However, due to the broad
spectrum of application areas and the diversity of im-
plementation practices in different domains, a “stan-
dard approach” for dealing with variability will prob-
ably never exist. There are a lot of “island solutions”
for variability modelling which either focus one partic-
ular level of abstraction or are monolithic and fixed to a
certain grammar, with a set of predefined features. This
hinders the widespread use of the existing approaches
in different domains and application contexts. Despite
the importance of variability modelling and the usage
of such models in a wide array of contexts, researchers
and practitioners are still struggling to find tools and
techniques that best suit their modelling needs.

Feature modelling is probably the most promi-
nent approach for modelling variability. Starting from
FODA [13], the feature-oriented view of the world has
already gone far beyond variability modelling and sys-
tem documentation. Several formal interpretations (e.g.
survey in [19]) of feature models and their applications
have already been published. Today several variants
of feature-based variability modelling tools and tech-
niques are available.

A comparably smaller number of publications pro-
pose decision-oriented approaches to modelling vari-
ability. The idea of decision modelling in product lines
is not new; it was introduced by Campbell et. al. [4, 2]
in the early 1990s, where decisions were “actions which
can be taken by application engineers to resolve the
variations for a work product of a system in the do-
main” [2]. Forster et. al. [10], Schmid et. al. [18],
Sellier et. al. [20] and others have been actively pub-
lishing their research results in this area. Astonishingly,
researchers have not yet found a common basis on the
notion of decisions. Some researchers follow decision
modelling on a rather informal basis (e.g. using tables
[18]), while others have already automated the decision



making procedure by using executable descriptions and
formal approaches.

We have incorporated a decision-oriented approach
into our tool suite DOPLER [8] consisting of the tools
DecisionKing [7, 6], ProjectKing [17] and Configura-
tionWizard [16]. Here we describe decision models
used in DOPLER tools more formally based on our ex-
periences and feedback from industry. We provide a
definition of the decision-oriented variability modelling
language DoVML.

2. The basics of DoVML

Modelling the variability of software systems in-
volves modelling the problem space (i.e., stakeholder
needs or desired features) and the solution space (i.e.,
the architecture and the components of the technical so-
lution). Separation of concerns based on problem space
and solution space was also dealt with by Metzger et. al
[14]. Our decision-oriented variability modelling lan-
guage (DoVML) supports the modelling of the problem
space using decisions and the solution space using as-
sets.

The basic constructs for modelling variability using
DoVML are depicted in figure 1. A Variability model
is a set of decisions, assets and rules. Decisions can be
organized in groups. The dependencies between deci-
sions are expressed using visibility conditions and valid-
ity conditions. The dependencies among assets and de-
cisions are established using inclusion conditions. Visi-
bility conditions, validity conditions, and inclusion con-
ditions are boolean expressions (the concrete syntax of
the expression language can be defined by the mod-
eller). Rules are comparable to constraints that ensure
that certain conditions always hold.

Figure 1. Constructs used in DoVML.

Product Line variability models built using
DoVML are constructed such that they can be used
for highly automated product derivation processes. The

structure of the decision models and the concepts used
therefor show high resemblance to process modelling
approaches. As for example: (i) Visibility conditions
are used to distinguish between decisions which are rel-
evant for the user and the ones which are not. This
guides the user through a product derivation process.
(ii) Decision attributes like questions, descriptions and
images are used to communicate decisions to the user.
(iii) Rules are executed automatically to ensure the con-
sistency of the decision making procedure.

2.1. The notion of a decision

A decision is a set of choices available at a certain
point in time and arises whenever for a given goal there
exist two or more ways of achieving it. Decisions can be
used to represent the variation points in a product line
model, and serve basically two purposes: (i) document-
ing and planning variability in the development phase
and (ii) guiding users and automating product configu-
ration during derivation phase. The process of taking
a decision involves judging the merits of multiple op-
tions and selecting one of them for action (e.g., based
on a consideration of customer requirements). In other
terms a decision making process leads to the selection
of a course of actions among several available alterna-
tives.

Decisions are not independent of each other and
cannot be made in isolation for two reasons: (i) Due to
the dependencies surrounding a given decision, many
decisions made earlier lead to new decisions and (ii)
Many decisions are limited (constrained) depending on
the context of already taken decisions.

In our modelling approach, we take care of two
kinds of dependencies among decisions. Firstly, we
need to be aware of the fact that not all decisions are
equally important or relevant at a certain time. We
therefore need constructs to model the hierarchy of de-
cisions. Secondly, taking a certain decision may have
implications on other decisions which also need to be
considered (constraints). We therefore need to take care
of the factors that influence the decision making process
itself.

2.2. Decision vs. decision variable

For modelling purposes, we sometimes refer to a
decision as a decision variable. A decision is a variable
(like in programming languages) enriched with infor-
mation regarding:

1. the set of possible values (including infinite sets,
multiple ranges, and/or range constraints)



2. the specification of its position in the decision hi-
erarchy (in relation to other available decisions)

3. the specification of the implications of taking the
decision (on other decisions) and

4. labels and annotations (information for the user to
better understand the decision).

Therefore, taking a decision is equivalent to bind-
ing a variable to a value.

Figure 2. Simplified representation of a vari-
ability model in DoVML.

2.3. The notion of an asset

Assets are used to describe the set of artefacts and
their dependencies that are available in a certain devel-
opment environment. The structure and organization of
the solution space is specific to the domain/industrial
context at hand, therefore the core of DoVML can be
parameterized with an asset-meta model. Our approach
doesn’t assume fixed types of assets for modelling vari-
ability. By providing an abstract conceptual represen-
tation of structured data, the modeler defines the “mod-
eling language” for the solution space. Due to lack of
space in this paper, we omit the details about asset meta-
modelling. In our modelling approach, the assets are
linked to decisions via inclusion conditions, which are
arbitrary boolean expressions built using the decision
variables.

Figure 2 depicts a simplified representation of a
variability model. It depicts the two key modelling ele-
ments (decisions and assets). The types of decisions in
use (Boolean, Enumeration, Integer etc.) and the types
of assets in use (Components, Resource, etc.) have been
ommitted. For a better understanding of the terms and
concepts presented in this paper, figure 2 is used as an
running example. In the example, we assume a simple
concrete syntax of the different expressions in use and
the kind of relationships between different assets (e.g.
requires) to be fixed.

2.4. Key concepts

In this paper the constructs of DoVML are de-
fined using elementary set theory. We use the terms
types, variables and expressions in the same way as
in typed λ -calculus and functional programming lan-
guages. This means that expressions do not have side-
effects and variables are bound to values. It also means
that complex expressions are built from variables and
simpler sub-expressions, by means of functions and op-
erations. To give an abstract definition of decision mod-
els, it is not necessary to fix the concrete syntax in which
the modeller writes the expressions, and thus we shall
assume that such a syntax exists (together with well de-
fined semantics). It is now possible in an unambiguous
way to talk about the following:

1. The type of a decision υ is denoted by τ(υ) and the
type of an expression ε is denoted by τ(ε). For a
type τ , we also use τ to denote the set of elements
in τ .

2. The set of decisions involved in an expression ε

is denoted by V(ε). This set of variables only in-
cludes the free variables, i.e., those which are not



bound internally in the expression (e.g. by local
definition).

3. For a set of decision variables {υ1, υ2, .., υn}, the
binding of the decisions in the set is denoted by
β=〈υ1:η1, υ2:η2, .., υn:ηn〉. It is required, that
η i∈τ(υ i).

4. Furthermore EB(S) is defined as the set of Boolean
expressions (terms and formulae), that can be
built using the variables in the set S. In other
words ∀ε∈EB(S): τ(ε) ∈ B ∧V(ε) ∈ S, where
B={true,false}.

3. Variability modelling with DoVML

DoVML needs to be parameterized (configured) to
the specifics of the domain, before it can be used to
model the variability. Such configurability of the lan-
guage provides us with the flexibility required to adapt
the approach to the needs of different variability imple-
mentation practices. We therefore define Σ, L, A and
AMM as needed, where

Σ is a finite set of data types, specifying the types of
variables to be used in the model, e.g. Boolean,
Enumeration, String, Double, Character etc. This
set can be extended with other types, as required by
the domain. E.g., more complex compound data
types (e.g. Date and Time) are also possible. In
the overview depicted in figure 1, the set Σ is rep-
resented by decision types.

L is a finite set of labelling functions providing detailed
information for every decision variable. Such an-
notations have no formal meaning, but are help-
ful in understanding the model. Examples of such
labels are- description of υ , images and URLs to
elaborate the meaning of υ to the user, the question
which the user is asked etc. Use of labelling func-
tions (as compared to unstructured text-tags) helps
in better interpretation of the tags. In the overview
depicted in figure 1, such labels represent the deci-
sion attributes.

A is a finite set of actions, which are carried out upon
taking decisions defined in the decision model.
Read only actions are used to validate the actual
status of the decisions taken by the user (e.g. as-
sertions that can be made in order to make sure that
certain constraints are fulfilled). Other actions can
be used to make changes in the model: variables
can be bound to new values and other properties
of decisions can be changed. The execution se-
mantics of the action should be provided with its

definition. Actions can be compared to domain-
specific functions for manipulation of decisions.

AMM is the meta-model of the assets, whose variability
needs to be modelled. It is comparable to “entity-
relationship models” in relational databases. The
asset meta-model specifies (defines) the language
for describing the solution space.

A decision model (DM) is a set of decision variables of
the defined types ∀υ ∈ DM : τ(υ) ∈ Σ. Every decision
variable in a decision model is a unique identifier and
can be bound to a certain set of values. The names
have no formal meaning but they have huge practical
importance for the readability of a decision model (just
like the use of mnemonic names in traditional program-
ming). The range of possible values is partly specified
by the type of the variable.

Furthermore the decisions in DM are specified in
more detail using fval , fvis and ℜ where

1. fval is a validity function restricting the range of
variables ∀υ ∈ DM : fval(υ)→ EB(DM).

2. fvis is a visibility function specifying the hierarchy
of decisions ∀υ ∈ DM : fvis(υ)→ EB(DM\{υ}).

3. ℜ is a set of rules in the form “if condition then ac-
tion” (e.g. EB(DM)⇒ 〈υ1 : η1〉, where a condition
implies a binding).

Using the asset meta-model AMM defined for the do-
main at hand, we also create an asset model AM, which
describes the set of available artefacts. We associate a
function finc to every asset α in the asset model, which
specifies when α needs to be included in the final prod-
uct ∀α ∈ AM : finc(α)→ EB(DM).

3.1. Validity condition fval(υ)

The set of possible values of a variable specified by
the type of the variable is often too broad. As an exam-
ple let us consider a decision υ , where τ(υ) = R. In
order to further restrict the range of the variable, one
can make use of a validity condition, a Boolean ex-
pression involving variables in DM, fval(υ)→EB(DM).
A validity condition fval(υ) of a decision can be seen
as the post-condition which has to be fulfilled after
υ is bound to a certain value. Using validity con-
ditions, it is possible to specify multiple ranges too
(e.g. fval(υ)→(υ≥η1∧υ≤η2)∨(υ≥η3∧υ≤η4)). It
can therefore also be seen as a range constraint, which
is evaluated before a variable binding can take place.
A binding β=〈υ :η〉 is valid if η∈τ(υ)∧ fval(υ), for
∀υ∈DM.



Example: For a decision variable υ , τ(υ)=R the va-
lidity condition could be defined as fval(υ)→(υ%2=0),
which would mean, that only even numbers are
valid values of the variable. In figure 2, we make
use of a validity condition for decision scale,
fval(scale)→(scale≥1), meaning that only positive
number from Z are valid values of scale.

3.2. Visibility condition fvis(υ)

For each decision variable υ∈DM, there exists a vis-
ibility function fvis(υ), which specifies, when a certain
decision can be taken by the user at a certain point in
time during derivation. The visibility condition needs
to be evaluated, before a value has been assigned to
the variable υ , so the expression returned by fvis(υ)
must not contain the variable υ itself. In other words,
∀υ∈DM: fvis(υ)∈EB(DM)∧V(ε)⊆(DM\{υ}).

Hierarchy based on visibility conditions: The hi-
erarchy of decisions (the order in which the decisions
need to be taken) is partly specified by fvis. To elaborate
on the effects of visibility conditions, we define a rela-
tionship � between decision variables with respect to
their visibility conditions. A variable υ1 is said to have
a � relationship to another variable υ2, if the variable
υ2 appears in the visibility condition of υ1. This kind
of relationship between variables, which is written as
υ1�υ2 (read as υ1’s visibility depends on υ2) is given if
υ2∈V( fvis(υ1)). � is non-reflexive (the visibility condi-
tion of a variable cannot depend on itself), strictly anti-
symmetric (variables cannot depend on each other) and
transitive.

Example: In figure 2, the decisions are orga-
nized in a hierarchy based on their visibility condi-
tions. Lets consider the decision regarding the medium
to archive: fvis(medium)→archive. The decision
medium can be taken by the user only if the deci-
sion archive is bound to the value true. This
implicitly requires, that the decision archive needs
to be taken before medium. We can also note that
fvis(archive)→true and fvis(oracle)→false,
which means these decisions are always/never visible
to the user respectively.

3.3. State variables

Decisions which are never visible to the user, i.e.
fvis(υ)→false, are referred to as state variables and
can be bound to their values only as a result of rules
(ℜ). Such decision variables can be used to keep track
of different execution states of the model. They are
bound to their values automatically as a result of exe-
cuting the rules. Such rules help in aggregating values

of decisions which have already been taken and allow
to simplify complex expressions in models. For exam-
ple (cf. figure 2) the decision variable oracle deter-
mining whether a oracle database is needed for the final
system may be bound to a certain value automatically
after the user decides on the size (scale) of the final
system.

3.4. Specification of rules ℜ

The effects of taking a decision (on other decisions)
are modelled using a set of rules. Rules can be used ba-
sically for (i) Assertion, (ii) Binding, (iii) Update and
(iv) Information. The semantic of rules used for asser-
tion and binding is identical to constraints specified us-
ing boolean expressions in constraint satisfaction prob-
lems (CSPs). However, by using rules to update the
model and to communicate to users at runtime, one can
go beyond the borders of traditional constraints (as this
is not the focus of constraints in CSPs). This also shows
that variability models based on DoVML are created
with the focus of an interactive product derivation pro-
cess. The rules are specified in the form:

if 〈condition〉 then 〈action〉,
where condition∈EB(DM) and action ∈ A.

A rule is activated or triggered when its condition
evaluates to true. Here we present a few examples of
rules and their application. For the sake of simplicity
in the examples, we assume the syntax of the rules to
be similar to Pascal like programming languages. Rules
could be used for:

(i) Assertion: Dependencies among de-
cisions, where certain conditions always
need to hold, e.g. a constraint in the form
(υ1=η1)⇒(υ2=η2) could be specified using the
rule: if(υ1=η1)then assert(υ2=η2) or simply
assert(¬(υ1=η1)∨(υ2=η2)). The assert action is a
read-only action. It does not change the value of the
variables, but only makes sure that the condition holds.

(ii) Binding: Whenever there is a need to change
the values of the variables we make use of binding ac-
tions. e.g. if (υ1=η1) then setValue(υ2,η2).
In general a binding action is comparable to a con-
straint as in CSPs, i.e. a condition implies a binding
EB(DM)⇒(β=〈υ1:η1〉). In contrast to the assertion ac-
tion, binding actions change the actual value of the de-
cisions (i.e., they take decisions on behalf of the user).
Here setValue is used as an example of a binding ac-
tion (the actual syntax and semantics of all the actions
is fixed when defining A).

(iii) Update: Not only the values but also dif-
ferent attributes of decisions can be updated/manipu-
lated using rules. As for example, depending on the



value of one decision, the validity condition of an-
other decision might change, e.g. if (υ1=η1) then

update( fval(υ2)→(η2÷5 6=3)). Such an update ac-
tion can be used to change the specification of model at
runtime. Modification of the decision model itself as an
implication of the decisions taken by the user can how-
ever also lead to problems regarding the determinability
of the decision making procedure.

(iv) Information: Rules can also be used for in-
formative purposes. By defining actions like inform,
or display one can also capture knowledge which is
required for the user during product derivation. Such
rules have no formal semantics, but can be very help-
ful to the user to improve guidance during deriva-
tion. Example usage scenarios for this would be the
creation of recommender systems based on variabil-
ity models e.g. if (υ1=η1) then inform(’It is

recommended that . . .’) [17].

3.5. Building an asset model

Asset models are instances of the asset-meta model
describing the structure of the solution space. When
building an asset meta-model the types of assets to be
used, their attributes and dependencies among them can
be defined. At this point, it is important to point out
some peculiarities of the asset meta-models which we
use in our approach.

Inclusion conditions: We associate a Boolean ex-
pression called inclusion condition to every asset α

in the asset model (AM). ∀α∈AM: finc(α)→EB(DM).
Such an expression specifies the condition under which
the asset α will be included in the final product. If
an asset is always included in the system (e.g. util-
ity classes, common libraries) then its inclusion con-
dition is simply true. Considering the example pre-
sented in figure 2, the inclusion condition of the compo-
nent XMLPersistor is defined as medium==xml.
This means that the component XMLPersistor is in-
cluded in the final product, if the decision medium is
set to xml. The inclusion condition can be arbitrar-
ily complex and can involve any number of variables,
thus supporting not only 1:1 mappings between deci-
sions and assets.

Basic dependency types: Often assets are not in-
cluded or excluded from the final product directly be-
cause of decisions taken by the user but rather because
of technical dependencies resulting from their imple-
mentation. For example (cf. figure 2), the component
FileManager is included in the final product because
it is required by the component FilePurger. In or-
der to model such technical dependencies (functional
and structural) we provide with a set of predefined re-

lationship types (for automated interpretation of asset-
dependencies). Examples of such basic relationship
types are inclusion, exclusion, parent, child, predeces-
sor, successor, implementation, abstraction etc. When
specifying the asset meta-model for a certain organiza-
tion, the modeler can define his own name for depen-
dency types (e.g. “requires”) and link it with a prede-
fined type (e.g. “inclusion”). The naming of depen-
dency types is similar to the concept of stereotypes in
the UML.

When defining the semantics of decision-oriented
variability models, we ignore L, and fvis, as they are
primarily modeled with the focus of the product deriva-
tion process. We also don’t care of the concrete syntax
in which fval and A are written. Further constructs like
“roles of users”, “configuration tasks” and project spe-
cific adaptations of the variability model [17] are out of
scope of this paper.

4. Semantics of DoVML

A decision model represents the set of all pos-
sible valid variable bindings of the vari-
ables in the decision model, resolution of DM ≡
ϒ(DM)={β 1,β 2,. . .,β n}, where n is possibly ∞ due to
variables with infinite ranges. The process of taking de-
cisions selects one possible binding from ϒ. The reso-
lution of a decision model is given by β∈ϒ.

A concrete binding β∈ϒ can then be used for eval-
uating (calculating) the list of required assets. From the
product derivation perspective, the assets can be seen as
boolean variables, whose values are determined by the
evaluation of their inclusion conditions. Every asset α

can be interpreted as a boolean variable τ(α)=B, whose
binding is given by 〈α: finc(α)〉.

Furthermore, if asset dependencies are defined be-
tween assets α1, α2, α3, such that α1 requires α2
requires α3, then the dependency requires can
be seen as a copy function, that assigns the same in-
clusion condition finc(α1) to finc(α2) and finc(α3). i.e.
α1 requires α2 requires α3⇒ ( finc(α3)≡ finc(α2)≡
finc(α1)). The consequence is that if α1 is included in
the final product, then α2 and α3 are also included.

4.1. Interpreting/executing a variability model

The operational semantics of decision-oriented
variability models can be explained by the algorithm in
figure 3, which can interpret such variability models.
The result of executing such a variability model is a set
of taken decisions (binding of decision variables) and a
set of assets required for the desired product.

Decision-making based on variability models (e.g.,



Figure 3. Overview of a sample algorithm for
the execution of variability models.

as a part product derivation/configuration) is an inter-
active process. Decisions can either be visible or in-
visible to the user. The transition between these states
is regulated by the evaluation of the visibility condi-
tion, which is triggered whenever a new variable bind-
ing takes place. All visible decisions are presented to
the user. The variable binding takes place either as a re-
sult of user interaction or as a result of rules which are
evaluated as required after a decision is taken. An asset
can either be included in or excluded from the desired
final product. The transition between these states occurs
as a result of the evaluation of the inclusion condition of
the assets.

Firstly, the visibility condition of each decision
variable is evaluated. If the condition holds, then a ques-
tion is presented to the user (possibly with other labels
of the decision variable) so that the variable is better un-
derstood when taking the decision. The input from the
user is evaluated against the validity condition. If the

input was a valid one, then the variable is bound to the
input value. Such a binding has two implications:

(i) It triggers the rule engine, which evaluates all
the rules and executes them as necessary (overview of
rule engine depicted in algorithm 1). Such rules can also
cause a variable binding, which leads to a recursive call
of the rule engine. So the execution of the action spec-
ified in the rule requires that the condition evaluates to
true. The execution of the action can change the set of
already bound variables; can however also only be in-
formative. As the rule engine can trigger the evaluation
of the rules again, it is important that there are no cyclic
dependencies in the model. Cycles in the rules can be
detected using standard cycle detection algorithms for
graph like data structures.

(ii) It triggers the evaluation of asset inclusion,
which is the process of figuring out which assets need to
be included in the final product. The process (depicted
in algorithm 2) consists of two phases: (i) evaluation
of the inclusion condition and (ii) evalutation of asset
dependencies. The set of included assets can then be
used by domain-specific application generators simula-
tors and deployment tools for further processing.

Algorithm 1 Sample evaluation of rules (rule engine)
Require: Binding β⊆{υ1:η1, υ2:η2, .., υn:ηn}

for all Rule ρ in ℜ do
if ρ .condition holds then

if ρ .action is of type binding then
β = β ∪ {〈ρ.action.υ:ρ.action.η〉}
re-evaluate all rules

else
domain-specific interpretation of ρ .action

end if
end if

end for
return Binding β

Algorithm 2 Sample evaluation included assets
Require: Binding β⊆{υ1:η1, υ2:η2, . . ., υn:ηn}

initialize set of included assets L
for all Asset α in AM do

if finc(α) holds ∧ then
L = L ∪ {α}
{evaluate asset relationships}
evaluate technical dependencies of α

end if
end for
return set of included assets L



5. Implementing DoVML

The approach described in this paper has been
implemented in a meta-tool for modelling variability
called DecisionKing [7, 9]. In order to reflect on the
current implementation status of the tool (from the per-
spective of the modelling language features), let us con-
sider the overview diagram depicted in figure 1. In De-
cisionKing we have realised the abstract core elements
of DoVML (i.e. Decisions, Assets, Groups and Rules)
by providing simple implementations for exemplifica-
tion.

Types of decisions (data types): DecisionKing
currently supports four basic types of decisions–
Boolean decisions are used to simulate yes/no ques-
tions. Number decisions are used mostly for parameter
values, where the user decides on a numerical value.
These are comparable to the type “double” in program-
ming languages. Other numerical types: integer, short
etc can be simulated using number decisions. String
decisions are used for similar purposes as number deci-
sions. They correspond to the data type “String” in pro-
gramming languages. Enumeration decision can be
seen as arrays of strings. Such decisions are used when-
ever different alternatives to the same variation point
need to be modeled.

Decision attributes (labelling functions): Currently
we support three decision attributes to communicate the
meaning of a decision to the user Descriptions are
blocks of text (e.g., in HTML) is used to clarify the
meaning of a decison. HTML also allows the easy in-
tegration of images, videos and animations to improve
guidance of product derivation process. Questions

are formulated in a concise way in the user’s problem
space language, such that the answer to that question
implies the value of the decision. By making use of
Annotations one can attach arbitrary information (in
textual form) to a decision.

Expression language (functions and actions): We
are currently using an expression language, which
shows high syntactic resemblance to Pascal. One can
make use of standard operators (e.g. +,−,÷,∗,=, 6=,≤
,≥,<,>,∨,∧, etc.) to build expressions. DecisionKing
provides an expression editor (with syntax highlighting
and auto completion, cf. figure 4) to ease the modelling
process. Apart from the standard operators we provide
the following actions to query the value of decisions
and build more complex expressions. setValue(d1,

p1) is an assignment function, which assigns the
value p1 to decision d1. selectOption(ld1,

op1), deselectOption(ld1, op1) are used to se-
lect/deselect an alternative in a enumeration decision.
contains(ld1, op1) is a set operator which can be

used in enumeration decisions to simulate⊂,⊆,∈ oper-
ations. allow(ld1, op1), disallow(ld1, op1)

are used to expand/restrict the set of possible values in a
enumeration decision. isTaken(d1) is used to query,
whether a decision has already been taken by the user.
reset() is used to retract a taken decision. Retract-
ing a decision also resets all its implications modelled
in the rules. These functions and actions add syntac-
tic sugar to the actual implementation of the engine that
evaluates the rules. We are currently using a rule en-
gine based on JBOSS Rules1. All rules written using
the functions defined above are translated into their cor-
responding representation in drools2 notation. As for
example the following rule

1 i f ( nu m s t r an ds >4) then
2 s e t V a l u e ( c a s t i n g m o d e , {” S i n g l e ”} ) ;
3 e n d i f

is automatically translated into drools rule:

1 r u l e ”0”
2 s a l i e n c e 0
3 no−l oop t rue
4 when
5 n u m s t r a n d s : RuleNumberDecis ion (
6 name == ” n u m s t r a n d s ” ,
7 a c t i v e == t rue ) and
8 e v a l ( n u m s t r a n d s . ge tPVa lue () >4) then
9 A r r a y L i s t <S t r i n g > d r o o l s a ;

10 i . i d e n t i f y ( ) ;
11 d r o o l s a = new A r r a y L i s t <S t r i n g > ( ) ;
12 d r o o l s a . add ( ” S i n g l e ” ) ;
13 i . s e t ( 0 , ” c a s t i n g m o d e ” ,
14 new A r r a y L i s t <S t r i n g >( d r o o l s a ) ) ;
15 end

Asset meta-models:As described earlier, for the de-
scription of the problem space, which is specific to im-
plementation practices in different domains, our tool
suite can be parameterized with a meta-model which is
comparable to ER-models. Until now, we have created
several such meta-models.
– Siemens VAI: For our industry partner we created a
meta-model consisting of Components, Resources and
Properties as asset types. Two dependency links (re-
quires and contributes to) were used to describe the
technical dependencies [7].
– ERP System: In order to model the variability of an
enterprise resource planning (ERP) systems, we created
a meta-model consisting of .NET “Plugins” as the basic
asset type [21].
– IAS System: We also modeled the variability of an in-
dustrial automation system (IAS) to automate the run-
time reconfiguration process [11].
– DOPLER tool suite: The variability of the DOPLER
tool suite itself was modelled using DoVML. For this

1http://www.jboss.com/products/rules
2http://www.jboss.org/drools/



Figure 4. Modelling decision dependencies in DecisionKing.

purpose we create a meta-model consisting of Eclipse
plugins, extension points and extension contributions as
the asset types [12].

6. Summary and further work

In this paper we presented the details of our vari-
ability modelling approach based on decision mod-
elling. Several publications in the past have already
elaborated on the tools DecisionKing, ProjectKing and
ConfigurationWizard, which are based on the modelling
approach described in this paper.

Our modelling approach focuses on one of the pri-
mary goals of a product derivation process, i.e. the iden-
tification of the required assets to fulfil the needs of the
customer specified in the form of taken decisions. This
is however only one application area of variability mod-
els based on decisions. Flexibility and adaptability is
introduced in our modelling approach by providing pa-
rameterization facilities for the language itself (e.g. by
defining Σ, L, A and AMM for each domain).

To illustrate the wide range of application areas, we
have already used our approach and tools to automate
the configuration of steel plant process automation soft-
ware [7], to manage runtime adaptation of enterprise re-
source planning systems [21], to manage the lifecycle
of industrial automation systems [11], and to monitor

service-oriented systems at runtime [3].
We are currently working on more formal represen-

tations of decision-oriented variability models and their
formal semantics. One longer term goal in this perspec-
tive is the formal definition and comparision to other
available decision modelling approaches.

Apart from that, we are continuously extending the
expression language used in our tool suite, which gives
us the power to express variability constructs using
functions at a higher level of abstraction. This includes
implementation of different set operators, actions and
other functions to model the dependencies among deci-
sions/assets.

Ongoing work includes consistency checking and
static analysis of decision-oriented models (e.g., by
converting them into constraint satisfaction problems or
petri nets) and further validation of the approach and
tools in real world examples of our industry partner.
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